更改

添加384字节 、 2021年12月7日 (二) 17:18
第170行: 第170行:  
=3</math> and (as noted above) <math>\alpha =0\ .</math>
 
=3</math> and (as noted above) <math>\alpha =0\ .</math>
   −
({{EquationNote|8}})和({{EquationNote|9}})分别来自里斯和斯考特的贡献。它们大概是历史上最早版本的临界指数关系。在此之后,Domb和Sykes以及Fisher注意到指数<math>\gamma</math>实际上比平均场值<math>\gamma =1</math>大。而在更早之前,Guggenheim的对应状态分析就清楚地表明<math>\beta</math>值更靠近1/3而非平均场值的1/2.
+
({{EquationNote|8}})和({{EquationNote|9}})分别来自里斯和斯考特的贡献。它们大概是历史上最早版本的临界指数关系。在此之后,Domb和Sykes以及Fisher注意到指数<math>\gamma</math>实际上比平均场值<math>\gamma =1</math>大。而在更早之前,Guggenheim的对应状态分析就清楚地表明<math>\beta</math>值更靠近1/3而非平均场值的1/2。之后在<math>\gamma
 +
=1</math>和<math>\beta \simeq 1/3\ ,</math>的假设下,里斯由({{EquationNote|8}})式总结出<math>\delta = 1+1/\beta
 +
\simeq 4</math>(如今已知正确值接近5)。同时斯考特由({{EquationNote|9}})式得出<math>\alpha =1-2\beta \simeq 1/3</math>(正确值接近1/10).另外平均场值<math>\delta
 +
=3</math>,<math>\alpha =0\ </math>。
    
The long-range spatial correlation functions in ferromagnets and fluids also exhibit a homogeneity of form near the critical point.  At magnetic field <math>H=0</math> (assumed for simplicity) the correlation function <math>h(r,t)</math> as a function of the spatial separation <math>r</math> (assumed very large) and temperature near the critical point (t assumed very small), is of the form [5,15]
 
The long-range spatial correlation functions in ferromagnets and fluids also exhibit a homogeneity of form near the critical point.  At magnetic field <math>H=0</math> (assumed for simplicity) the correlation function <math>h(r,t)</math> as a function of the spatial separation <math>r</math> (assumed very large) and temperature near the critical point (t assumed very small), is of the form [5,15]
596

个编辑