第162行: |
第162行: |
| F/\partial H)_T\ </math>,等温条件下自由能 <math>F</math> 可以通过积分由({{EquationNote|7}})式得出,且相应的热容 <math>C_H = -(\partial ^2 | | F/\partial H)_T\ </math>,等温条件下自由能 <math>F</math> 可以通过积分由({{EquationNote|7}})式得出,且相应的热容 <math>C_H = -(\partial ^2 |
| F/\partial T^2)_H\ </math>。由({{EquationNote|7}})式可知,在<math>H=0</math> 时 <math>C_H</math> 在临界点处依<math>\mid t\mid ^{-\alpha}</math>比例发散(其中 <math>t\rightarrow 0-</math> 和 <math>t\rightarrow | | F/\partial T^2)_H\ </math>。由({{EquationNote|7}})式可知,在<math>H=0</math> 时 <math>C_H</math> 在临界点处依<math>\mid t\mid ^{-\alpha}</math>比例发散(其中 <math>t\rightarrow 0-</math> 和 <math>t\rightarrow |
− | 0+ </math>各有不同的系数),临界点指数 <math>\alpha</math> 与<math>\beta</math> 和 <math>\gamma</math> 满足以下标度律:{{NumBlk|:|<math>\alpha +2\beta +\gamma=2. </math>|{{EquationRef|9}}}}When <math>2\beta+\gamma=2</math> the resulting <math>\alpha =0</math> means, generally, a logarithmic rather than power-law divergence together with a superimposed finite discontinuity occurring between <math>t=0+</math> and <math>t=0-</math> [4]. In the 2-dimensional Ising model the discontinuity is absent and only the logarithm remains, while in mean-field (van der Waals, Curie-Weiss, Bragg-Williams) approximation the logarithm is absent but the discontinuity is still present. | + | 0+ </math> 各有不同的系数),临界点指数 <math>\alpha</math> 与<math>\beta</math> 和 <math>\gamma</math> 满足以下标度律:{{NumBlk|:|<math>\alpha +2\beta +\gamma=2. </math>|{{EquationRef|9}}}}When <math>2\beta+\gamma=2</math> the resulting <math>\alpha =0</math> means, generally, a logarithmic rather than power-law divergence together with a superimposed finite discontinuity occurring between <math>t=0+</math> and <math>t=0-</math> [4]. In the 2-dimensional Ising model the discontinuity is absent and only the logarithm remains, while in mean-field (van der Waals, Curie-Weiss, Bragg-Williams) approximation the logarithm is absent but the discontinuity is still present. |
| | | |
− | 当<math>2\beta+\gamma=2</math>,则有<math>\alpha =0</math>,这通常意味着对数发散而不是幂律发散,并且在<math>t=0+</math>和<math>t=0-</math>之间存在叠加有限不连续。在二维伊辛模型中,仅有对数关系而这种不连续是不存在的;而在平均场近似中情形相反。 | + | 当 <math>2\beta+\gamma=2</math>,则有 <math>\alpha =0</math>,这通常意味着对数发散而不是幂律发散,并且在 <math>t=0+</math> 和 <math>t=0-</math> 之间存在叠加有限不连续。在二维伊辛模型中,仅有对数关系而这种不连续是不存在的;而在平均场近似中情形相反。 |
| == Critical exponents 临界指数 == | | == Critical exponents 临界指数 == |
| | | |
第172行: |
第172行: |
| =3</math> and (as noted above) <math>\alpha =0\ .</math> | | =3</math> and (as noted above) <math>\alpha =0\ .</math> |
| | | |
− | ({{EquationNote|8}})和({{EquationNote|9}})分别来自里斯和斯考特的贡献。它们大概是历史上最早版本的临界指数关系。在此之后,Domb和Sykes以及Fisher注意到指数<math>\gamma</math>实际上比平均场值<math>\gamma =1</math>大。而在更早之前,Guggenheim的对应状态分析就清楚地表明<math>\beta</math>值更靠近1/3而非平均场值的1/2。之后在<math>\gamma | + | ({{EquationNote|8}})和({{EquationNote|9}})分别来自里斯和斯考特的贡献。它们大概是历史上最早版本的临界指数关系。在此之后,Domb和Sykes以及Fisher注意到指数 <math>\gamma</math> 实际上比平均场值<math>\gamma =1</math> 大。而在更早之前,Guggenheim的对应状态分析就清楚地表明 <math>\beta</math>值更靠近1/3而非平均场值的1/2。之后在 <math>\gamma |
− | =1</math>和<math>\beta \simeq 1/3\ </math>的假设下,里斯由({{EquationNote|8}})式总结出<math>\delta = 1+1/\beta | + | =1</math> 和 <math>\beta \simeq 1/3\ </math>的假设下,里斯由({{EquationNote|8}})式总结出 <math>\delta = 1+1/\beta |
− | \simeq 4</math>(如今已知正确值接近5)。同时斯考特由({{EquationNote|9}})式得出<math>\alpha =1-2\beta \simeq 1/3</math>(正确值接近1/10)。另外平均场值<math>\delta | + | \simeq 4</math>(如今已知正确值接近5)。同时斯考特由({{EquationNote|9}})式得出 <math>\alpha =1-2\beta \simeq 1/3</math>(正确值接近1/10)。另外平均场值 <math>\delta |
| =3</math>,<math>\alpha =0\ </math>。 | | =3</math>,<math>\alpha =0\ </math>。 |
| | | |
第181行: |
第181行: |
| :<math>\label{eq:10} | | :<math>\label{eq:10} |
| h(r,t)=r^{-(d-2+\eta)}G(r/\xi). </math> | | h(r,t)=r^{-(d-2+\eta)}G(r/\xi). </math> |
− | 铁磁体和流体中的长程空间相关函数在临界点附近也表现出齐次性。简单起见,考虑磁场强度<math>H=0</math>且温度接近临界点的情况,关联函数<math>h(r,t)</math>作为空间分离<math>r</math>(假设很大)的函数,如下所示:{{NumBlk|:|<math>h(r,t)=r^{-(d-2+\eta)}G(r/\xi). </math>|{{EquationRef|10}}}} | + | 铁磁体和流体中的长程空间相关函数在临界点附近也表现出齐次性。简单起见,考虑磁场强度 <math>H=0</math> 且温度接近临界点的情况,关联函数 <math>h(r,t)</math> 作为空间分离 <math>r</math>(假设很大)的函数,如下所示:{{NumBlk|:|<math>h(r,t)=r^{-(d-2+\eta)}G(r/\xi). </math>|{{EquationRef|10}}}} |
| | | |
| Here <math>d</math> is the dimensionality of space, <math>\eta</math> is another critical-point exponent, and <math>\xi</math> is the correlation length (exponential | | Here <math>d</math> is the dimensionality of space, <math>\eta</math> is another critical-point exponent, and <math>\xi</math> is the correlation length (exponential |
第188行: |
第188行: |
| :<math>\label{eq:11} | | :<math>\label{eq:11} |
| \xi\sim \mid t\mid ^{-\nu} </math> | | \xi\sim \mid t\mid ^{-\nu} </math> |
− | 其中<math>d</math>是空间维度,<math>\eta</math>是另一临界点指数,<math>\xi</math>是关联长度(相关关系的指数衰减长度),当趋近于临界点时,其发散过程满足:{{NumBlk|:|<math>\xi\sim \mid t\mid ^{-\nu}</math>|{{EquationRef|11}}}} | + | 其中 <math>d</math> 是空间维度,<math>\eta</math> 是另一临界点指数,<math>\xi</math> 是关联长度(相关关系的指数衰减长度),当趋近于临界点时,其发散过程满足:{{NumBlk|:|<math>\xi\sim \mid t\mid ^{-\nu}</math>|{{EquationRef|11}}}} |
| | | |
| as the critical point is approached, with <math>\nu</math> still another critical-point exponent. Thus, <math>h(r,t)</math> (with <math>H=0)</math> is a homogeneous function of <math>r</math> and <math>\mid t\mid | | as the critical point is approached, with <math>\nu</math> still another critical-point exponent. Thus, <math>h(r,t)</math> (with <math>H=0)</math> is a homogeneous function of <math>r</math> and <math>\mid t\mid |
第198行: |
第198行: |
| \begin{array} {lc }x^{\frac{1}{2}(d-3)+\eta} e^{-x}, & x\rightarrow | | \begin{array} {lc }x^{\frac{1}{2}(d-3)+\eta} e^{-x}, & x\rightarrow |
| \infty \\ 1, & x\rightarrow 0 . \end{array} \right. </math> | | \infty \\ 1, & x\rightarrow 0 . \end{array} \right. </math> |
− | 其中<math>\nu</math>是另外的临界指数。因此<math>h(r,t)</math>(<math>H=0)</math>)是<math>r</math>和<math>\mid t\mid | + | 其中 <math>\nu</math> 是另外的临界指数。因此 <math>h(r,t)</math>(<math>H=0</math>)是 <math>r</math> 和 <math>\mid t\mid |
− | ^{-\nu}</math>的<math>-(d-2+\eta)\ </math>次齐次方程。标度函数<math>G(x)</math>具有以下性质(在常数比例因子范围内):{{NumBlk|:|<math>G(x) \sim \left\{ | + | ^{-\nu}</math> 的<math>-(d-2+\eta)\ </math>次齐次方程。标度函数 <math>G(x)</math> 具有以下性质(在常数比例因子范围内):{{NumBlk|:|<math>G(x) \sim \left\{ |
| \begin{array} {lc }x^{\frac{1}{2}(d-3)+\eta} e^{-x}, & x\rightarrow | | \begin{array} {lc }x^{\frac{1}{2}(d-3)+\eta} e^{-x}, & x\rightarrow |
| \infty \\ 1, & x\rightarrow 0 . \end{array} \right. </math>|{{EquationRef|12}}}} | | \infty \\ 1, & x\rightarrow 0 . \end{array} \right. </math>|{{EquationRef|12}}}} |
第205行: |
第205行: |
| Thus, as <math>r\rightarrow \infty</math> in any fixed thermodynamic state (fixed t) near the critical point, <math>h</math> decays with increasing <math>r</math> proportionally to <math>r^{-\frac{1}{2}(d-1)}e^{-r/\xi}\ ,</math> as in the [https://en.wikipedia.org/wiki/Ornstein%E2%80%93Zernike_equation?oldformat=true '''Ornstein-Zernike theory''']. If, instead, the critical point is approached <math>(\xi \rightarrow \infty)</math> with a fixed, large <math>r\ ,</math> we have <math>h(r)</math> decaying with <math>r</math> only as an inverse power, <math>r^{-(d-2+\eta)}\ ,</math> which corrects the <math>r^{-(d-2)}</math> that appears in the Ornstein-Zernike theory in that limit. The scaling law({{EquationNote|1=10}}) with scaling function <math>G(x)</math> interpolates between these extremes. | | Thus, as <math>r\rightarrow \infty</math> in any fixed thermodynamic state (fixed t) near the critical point, <math>h</math> decays with increasing <math>r</math> proportionally to <math>r^{-\frac{1}{2}(d-1)}e^{-r/\xi}\ ,</math> as in the [https://en.wikipedia.org/wiki/Ornstein%E2%80%93Zernike_equation?oldformat=true '''Ornstein-Zernike theory''']. If, instead, the critical point is approached <math>(\xi \rightarrow \infty)</math> with a fixed, large <math>r\ ,</math> we have <math>h(r)</math> decaying with <math>r</math> only as an inverse power, <math>r^{-(d-2+\eta)}\ ,</math> which corrects the <math>r^{-(d-2)}</math> that appears in the Ornstein-Zernike theory in that limit. The scaling law({{EquationNote|1=10}}) with scaling function <math>G(x)</math> interpolates between these extremes. |
| | | |
− | 因此,在任何靠近临界点的恒温热力学状态下,当<math>r\rightarrow \infty</math>时,<math>h</math>随<math>r</math>的增加依<math>r^{-\frac{1}{2}(d-1)}e^{-r/\xi}\ </math>成比例衰减(参见'''[https://en.wikipedia.org/wiki/Ornstein%E2%80%93Zernike_equation? 奥恩斯泰因-泽尔尼克理论 Ornstein-Zernike theory]''')。如果相反,在固定的大<math>r\ </math>条件下,迫近临界点(<math>(\xi \rightarrow \infty)</math>),会有<math>h(r)</math>作为逆幂<math>r^{-(d-2+\eta)}\ </math>随<math>r</math>衰减,这也修正了在此极限条件下奥恩斯泰因-泽尔尼克理论中出现的<math>r^{-(d-2)}</math>。标度律({{EquationNote|1=10}})及标度函数<math>G(x)</math>内插于这些极限之间。 | + | 因此,在任何靠近临界点的恒温热力学状态下,当 <math>r\rightarrow \infty</math> 时,<math>h</math> 随<math>r</math> 的增加依 <math>r^{-\frac{1}{2}(d-1)}e^{-r/\xi}\ </math> 成比例衰减(参见'''[https://en.wikipedia.org/wiki/Ornstein%E2%80%93Zernike_equation? 奥恩斯泰因-泽尔尼克理论 Ornstein-Zernike theory]''')。如果相反,在固定的大 <math>r\ </math> 条件下,迫近临界点(<math>\xi \rightarrow \infty</math>),会有 <math>h(r)</math> 作为逆幂 <math>r^{-(d-2+\eta)}\ </math> 随 <math>r</math> 衰减,这也修正了在此极限条件下奥恩斯泰因-泽尔尼克理论中出现的 <math>r^{-(d-2)}</math>。标度律({{EquationNote|1=10}})及标度函数 <math>G(x)</math> 内插于这些极限之间。 |
| | | |
| In the language of fluids, with <math>\rho</math> the number density and <math>\chi</math> the isothermal compressibility, we have as an exact relation in the Ornstein-Zernike theory | | In the language of fluids, with <math>\rho</math> the number density and <math>\chi</math> the isothermal compressibility, we have as an exact relation in the Ornstein-Zernike theory |
第212行: |
第212行: |
| \rho kT | | \rho kT |
| \chi =1+\rho \int h(r) \rm{d}\tau </math> | | \chi =1+\rho \int h(r) \rm{d}\tau </math> |
− | 在流体研究中,有数密度<math>\rho</math>和等温压缩率<math>\chi</math>,我们可以得到一个'''[https://en.wikipedia.org/wiki/Ornstein%E2%80%93Zernike_equation? 奥恩斯泰因-泽尔尼克理论]'''的精确表达式:{{NumBlk|:|<math>\rho kT
| + | 在流体研究中,由数密度 <math>\rho</math> 和 等温压缩率<math>\chi</math>,我们可以得到一个'''[https://en.wikipedia.org/wiki/Ornstein%E2%80%93Zernike_equation? 奥恩斯泰因-泽尔尼克理论]'''的精确表达式:{{NumBlk|:|<math>\rho kT |
| \chi =1+\rho \int h(r) \rm{d}\tau</math>|{{EquationRef|13}}}} | | \chi =1+\rho \int h(r) \rm{d}\tau</math>|{{EquationRef|13}}}} |
| | | |
第222行: |
第222行: |
| :<math>\label{eq:14} | | :<math>\label{eq:14} |
| (2-\eta)\nu = \gamma . </math> | | (2-\eta)\nu = \gamma . </math> |
− | 其中<math>k</math>是'''[[玻尔兹曼常数]]''',<math>\rm{d} \tau</math>是体积元,积分区域是整个空间。对铁磁体也有相同的关系成立,包含磁化率<math>\chi</math>,<math>\rho</math>与临界密度<math>\rho_c</math>的差值,以及磁化强度<math>M\ </math>。在临界点处,<math>\chi</math>无穷大,且对应积分式也发散,因为衰减长度<math>\xi</math>也是无穷大的。而密度<math>\rho</math>为有限正常数<math>\rho_c</math>,<math>T</math>为<math>T_c\ </math>。{{NumBlk|:|<math>(2-\eta)\nu = \gamma . </math>|{{EquationRef|14}}}}The surface tension <math>\sigma</math> in liquid-vapor equilibrium, or the analogous excess free energy per unit area of the interface between coexisting, oppositely magnetized domains, vanishes at the critical point (Curie point) proportionally to <math>(-t)^\mu</math> with <math>\mu</math> another critical-point exponent. The interfacial region has a thickness of the order of the correlation length <math>\xi</math> so <math>\sigma/\xi</math> is the free energy per unit volume associated with the interfacial region. That is in its magnitude and in its singular critical-point behavior the same free energy per unit volume as in the bulk phases, from which the heat capacity follows by two differentiations with respect to the temperature. Thus, <math>\sigma/\xi</math> vanishes proportionally to <math>(-t)^{2-\alpha}\ ;</math> so, together with ({{EquationNote|1=9}}), | + | 其中 <math>k</math> 是'''[[玻尔兹曼常数]]''',<math>\rm{d} \tau</math> 是体积元,积分区域是整个空间。对铁磁体也有相同的关系成立,包含磁化率 <math>\chi</math>,<math>\rho</math> 与临界密度 <math>\rho_c</math> 的差值,以及磁化强度 <math>M\ </math>。在临界点处,<math>\chi</math> 无穷大,且对应积分式也发散,因为衰减长度 <math>\xi</math> 也是无穷大的。而密度 <math>\rho</math>为有限正常数 <math>\rho_c</math>,<math>T</math> 为 <math>T_c\ </math>。{{NumBlk|:|<math>(2-\eta)\nu = \gamma . </math>|{{EquationRef|14}}}}The surface tension <math>\sigma</math> in liquid-vapor equilibrium, or the analogous excess free energy per unit area of the interface between coexisting, oppositely magnetized domains, vanishes at the critical point (Curie point) proportionally to <math>(-t)^\mu</math> with <math>\mu</math> another critical-point exponent. The interfacial region has a thickness of the order of the correlation length <math>\xi</math> so <math>\sigma/\xi</math> is the free energy per unit volume associated with the interfacial region. That is in its magnitude and in its singular critical-point behavior the same free energy per unit volume as in the bulk phases, from which the heat capacity follows by two differentiations with respect to the temperature. Thus, <math>\sigma/\xi</math> vanishes proportionally to <math>(-t)^{2-\alpha}\ ;</math> so, together with ({{EquationNote|1=9}}), |
| :<math>\label{eq:15} | | :<math>\label{eq:15} |
| \mu + \nu = 2-\alpha= \gamma +2\beta, </math> | | \mu + \nu = 2-\alpha= \gamma +2\beta, </math> |
− | 液-气平衡时的表面张力<math>\sigma</math>,或共存的、相反磁化畴之间的界面单位面积上的类似过剩自由能,在临界点(居里点)与<math>(-t)^\mu</math>(<math>\mu</math>对应此处临界点指数)成比例消失。界面区域的厚度与关联长度<math>\xi</math>的数量级相当<small>''(此句需要大家帮忙检查)''</small>,因此<math>\sigma/\xi</math>是与界面区域相关的单位体积自由能。在它的大小和它的奇异临界点行为中,每单位体积的自由能和在体相中是一样的,从体相中,依据关于温度的两个微分可以得出热容。因此,<math>\sigma/\xi</math>依<math>(-t)^{2-\alpha}\ </math>成比例消失;再联系({{EquationNote|1=9}})式可以得到另一个标度关系:{{NumBlk|:|<math>\mu + \nu = 2-\alpha= \gamma +2\beta,</math>|{{EquationRef|15}}}} | + | 液-气平衡时的表面张力 <math>\sigma</math>,或共存的、相反磁化畴之间的界面单位面积上的类似过剩自由能,在临界点(居里点)与 <math>(-t)^\mu</math>(<math>\mu</math>对应此处临界点指数)成比例消失。界面区域的厚度与关联长度 <math>\xi</math> 的数量级相当,因此 <math>\sigma/\xi</math> 是与界面区域相关的单位体积自由能。在它的大小和它的奇异临界点行为中,每单位体积的自由能和在体相中是一样的,从体相中,依据关于温度的两个微分可以得出热容。因此,<math>\sigma/\xi</math> 依 <math>(-t)^{2-\alpha}\ </math> 成比例消失;再联系({{EquationNote|1=9}})式可以得到另一个标度关系:{{NumBlk|:|<math>\mu + \nu = 2-\alpha= \gamma +2\beta,</math>|{{EquationRef|15}}}} |
| | | |
| another scaling relation [16,17]. | | another scaling relation [16,17]. |
第250行: |
第250行: |
| :<math>\label{eq:16} | | :<math>\label{eq:16} |
| \mu = (d-1)\nu, </math> | | \mu = (d-1)\nu, </math> |
− | 临界点指数取决于维数<math>d\ </math>。人们发现,将 <math>d</math> 视为具有任意大小的连续变量可以解释说明这一观点。在一类被称为超标度的临界点指数关系中,可以清楚地看到 <math>d</math>。关联长度 <math>\xi</math> 为密度或磁化波动的相干长度。决定其大小的是体积 <math>\xi ^d</math> 中与自发波动有关的过剩自由能,且一定是<math>kT\ </math>阶的,在临界点处具有有限值 <math>kT_c</math> 。但在这样的微元体中,典型的波动只会产生共轭相。则自由能 <math>kT</math> 为创建区域 <math>\xi^{d-1}\ </math>的界面 <math>\sigma \xi^{d-1}\ </math>的自由能。因此,当接近临界点时,<math>\sigma \xi^{d-1}</math> 具有 <math>kT_c\ </math> 阶的有限极限。再由指数 <math>\mu</math> 和 <math>\nu\ </math>的定义可得超标度关系:{{NumBlk|:|<math>\mu = (d-1)\nu,</math>|{{EquationRef|16}}}} | + | 临界点指数取决于维数 <math>d\ </math>。人们发现,将 <math>d</math> 视为具有任意大小的连续变量可以解释说明这一观点。在一类被称为超标度的临界点指数关系中,可以清楚地看到 <math>d</math>。关联长度 <math>\xi</math> 为密度或磁化波动的相干长度。决定其大小的是体积 <math>\xi ^d</math> 中与自发波动有关的过剩自由能,且一定是<math>kT\ </math> 阶的,在临界点处具有有限值 <math>kT_c</math> 。但在这样的微元体中,典型的波动只会产生共轭相。则自由能 <math>kT</math> 为创建区域 <math>\xi^{d-1}\ </math>的界面 <math>\sigma \xi^{d-1}\ </math>的自由能。因此,当接近临界点时,<math>\sigma \xi^{d-1}</math> 具有 <math>kT_c\ </math> 阶的有限极限。再由指数 <math>\mu</math> 和 <math>\nu\ </math>的定义可得超标度关系:{{NumBlk|:|<math>\mu = (d-1)\nu,</math>|{{EquationRef|16}}}} |
| | | |
| a hyperscaling relation [16]. With ({{EquationNote|1=15}}) we then have also [16] | | a hyperscaling relation [16]. With ({{EquationNote|1=15}}) we then have also [16] |
第266行: |
第266行: |
| Unlike the scaling laws ({{EquationNote|1=8}}), ({{EquationNote|1=9}}), ({{EquationNote|1=14}}), and ({{EquationNote|1=15}}), which make no explicit reference to the dimensionality, the <math>d</math>-dependent exponent relations ({{EquationNote|1=16}})-({{EquationNote|1=18}}) hold only for <math>d<4\ .</math> At <math>d=4</math> the exponents assume the values they have in the mean-field theories but logarithmic factors are then appended to the simple power laws. Then for <math>d>4\ ,</math> the terms in the thermodynamic functions and correlation-function parameters that have as their exponents those given by the mean-field theories are the leading terms. The terms with the original <math>d</math>-dependent exponents, which for <math>d<4</math> were the leading terms, have been overtaken, and, while still present, are now sub-dominant. | | Unlike the scaling laws ({{EquationNote|1=8}}), ({{EquationNote|1=9}}), ({{EquationNote|1=14}}), and ({{EquationNote|1=15}}), which make no explicit reference to the dimensionality, the <math>d</math>-dependent exponent relations ({{EquationNote|1=16}})-({{EquationNote|1=18}}) hold only for <math>d<4\ .</math> At <math>d=4</math> the exponents assume the values they have in the mean-field theories but logarithmic factors are then appended to the simple power laws. Then for <math>d>4\ ,</math> the terms in the thermodynamic functions and correlation-function parameters that have as their exponents those given by the mean-field theories are the leading terms. The terms with the original <math>d</math>-dependent exponents, which for <math>d<4</math> were the leading terms, have been overtaken, and, while still present, are now sub-dominant. |
| | | |
− | 标度律({{EquationNote|1=8}}),({{EquationNote|1=9}}),({{EquationNote|1=14}})和({{EquationNote|1=15}})没有明显的和空间维数相联系,而({{EquationNote|1=16}})-({{EquationNote|1=18}})则是依赖于<math>d</math>的指数关系式,且仅对<math>d<4\ </math>成立。对于<math>d=4</math>,热力学函数中依据平均场理论给出的以相关函数参数为指数的项是主导项。而本身在<math>d<4</math>时,包含依赖于<math>d</math>的指数的主导项,虽然依然存在,但是已经被取代而变成次要项。 | + | 标度律({{EquationNote|1=8}}),({{EquationNote|1=9}}),({{EquationNote|1=14}})和({{EquationNote|1=15}})没有明显的和空间维数相联系,而({{EquationNote|1=16}})-({{EquationNote|1=18}})则是依赖于 <math>d</math> 的指数关系式,且仅对 <math>d<4\ </math>成立。对于 <math>d=4</math>,热力学函数中依据平均场理论给出的以相关函数参数为指数的项是主导项。而本身在<math>d<4</math>时,包含依赖于 <math>d</math> 的指数的主导项,虽然依然存在,但是已经被取代而变成次要项。 |
| | | |
| This progression in critical-point properties from <math>d<4</math> to <math>d=4</math> to <math>d>4</math> is seen clearly in the phase transition that occurs in the analytically soluble model of the ideal Bose gas. There is no phase transition or critical point in it for <math>d \le 2\ .</math> When <math>d>2</math> the chemical potential | | This progression in critical-point properties from <math>d<4</math> to <math>d=4</math> to <math>d>4</math> is seen clearly in the phase transition that occurs in the analytically soluble model of the ideal Bose gas. There is no phase transition or critical point in it for <math>d \le 2\ .</math> When <math>d>2</math> the chemical potential |
第279行: |
第279行: |
| \\ \mu \ln(-\mu/kT), & d=4 \\ \\ -\mu , & d>4 . \end{array}\right. | | \\ \mu \ln(-\mu/kT), & d=4 \\ \\ -\mu , & d>4 . \end{array}\right. |
| </math> | | </math> |
− | 在理想玻色气体的解析溶解模型中,可以清楚地看到临界点性质从<math>d<4</math>到<math>d=4</math>再到<math>d>4</math>的变化过程。在<math>d \le 2\ </math>的情形下,不存在相变或者临界点。当<math>d>2</math>时,对于所有<math>\rho \Lambda ^d | + | 在理想玻色气体的解析溶解模型中,可以清楚地看到临界点性质从 <math>d<4</math> 到 <math>d=4</math> 再到 <math>d>4</math> 的变化过程。在 <math>d \le 2\ </math> 的情形下,不存在相变或者临界点。当 <math>d>2</math> 时,对于所有 <math>\rho \Lambda ^d |
− | \ge \zeta (d/2)\ </math>,化学势<math>\mu</math>(此处不要与表面张力指数<math>\mu</math>混淆)都会变为零。其中<math>\rho</math>是密度,<math>\Lambda</math>是热德布罗意波长,即<math>h/\sqrt {2\pi mkT}</math>(其中<math>h</math>是普朗克常数,<math>m</math>是原子质量),<math>\zeta (s)</math>是黎曼<math>\zeta</math>函数。当由下<math>\rho \Lambda^d \rightarrow | + | \ge \zeta (d/2)\ </math>,化学势 <math>\mu</math>(此处不要与表面张力指数 <math>\mu</math> 混淆)都会变为零。其中 <math>\rho</math> 是密度,<math>\Lambda</math> 是热德布罗意波长,即 <math>h/\sqrt {2\pi mkT}</math>(其中 <math>h</math> 是普朗克常数,<math>m</math> 是原子质量),<math>\zeta (s)</math> 是黎曼 <math>\zeta</math> 函数。当由下 <math>\rho \Lambda^d \rightarrow |
− | \zeta(d/2)</math>时,<math>\mu</math>从负值范围变为零。当<math>\mu \rightarrow 0-\ </math>时,<math>\zeta(d/2)-\rho \Lambda^d</math>之差(在正比例因子内)变为零,且满足以下关系:{{NumBlk|1=:|2=<math>\zeta(d/2)-\rho | + | \zeta(d/2)</math> 时,<math>\mu</math> 从负值范围变为零。当 <math>\mu \rightarrow 0- </math> 时,<math>\zeta(d/2)-\rho \Lambda^d</math> 之差(在正比例因子内)变为零,且满足以下关系:{{NumBlk|1=:|2=<math>\zeta(d/2)-\rho |
| \Lambda^d \sim \left\{ \begin{array} {lc }(-\mu)^{d/2-1}, & 2<d<4 \\ | | \Lambda^d \sim \left\{ \begin{array} {lc }(-\mu)^{d/2-1}, & 2<d<4 \\ |
| \\ \mu \ln(-\mu/kT), & d=4 \\ \\ -\mu , & d>4 . \end{array}\right. </math>|3={{EquationRef|19}}}} | | \\ \mu \ln(-\mu/kT), & d=4 \\ \\ -\mu , & d>4 . \end{array}\right. </math>|3={{EquationRef|19}}}} |
第288行: |
第288行: |
| <math>d>4</math> the singular <math>(-\mu)^{d/2-1}</math> is still present but is dominated by the mean-field <math>-\mu\ .</math> | | <math>d>4</math> the singular <math>(-\mu)^{d/2-1}</math> is still present but is dominated by the mean-field <math>-\mu\ .</math> |
| | | |
− | 当<math>2<d<4</math>时,平均场指数<math>-\mu</math>依然存在,但是主导指数则是<math>(-\mu)^{d/2-1}\ </math>;当<math>d>4</math>时,奇异指数<math>(-\mu)^{d/2-1}</math>依然存在,但是主导指数为<math>-\mu\ </math>。 | + | 当 <math>2<d<4</math> 时,平均场指数 <math>-\mu</math> 依然存在,但是主导指数则是<math>(-\mu)^{d/2-1}\ </math>;当 <math>d>4</math> 时,奇异指数 <math>(-\mu)^{d/2-1}</math> 依然存在,但是主导指数为 <math>-\mu\ </math>。 |
| | | |
| This behavior is reflected again in the R'''enormalization-group theory''' [19-21]. In the simplest cases there are two competing fixed points for the renormalization-group flows, one of them associated with <math>d</math>-dependent | | This behavior is reflected again in the R'''enormalization-group theory''' [19-21]. In the simplest cases there are two competing fixed points for the renormalization-group flows, one of them associated with <math>d</math>-dependent |
第304行: |
第304行: |
| depending on <math>d\ .</math> | | depending on <math>d\ .</math> |
| | | |
− | 这一行为也反映在重整化群理论中。最简单的情形是,重整化群流中有两个相互竞争的不动点,一点与依赖<math>d</math>的指数相关,同时满足与<math>d</math>无关的标度关系和超标度关系,另一点则与平均场理论的<math>d</math>无关指数相关。前者决定了当<math>d<4\ </math>时的主导临界点行为。<math>d=4</math>时,这两个不动点重合,指数现在是平均场理论的指数,但在平均场幂律中增加了对数因子。对于<math>d>4</math>,两固定点再次分开,此时主导临界点行为源自平均场理论的指数。综上所述,两固定点产生的影响覆盖所有<math>d\ </math>的取值范围,但是随着<math>d\ </math>取值的变化,主导临界点行为会在二者之间切换。 | + | 这一行为也反映在重整化群理论中。最简单的情形是,重整化群流中有两个相互竞争的不动点,一点与依赖 <math>d</math> 的指数相关,同时满足与 <math>d</math> 无关的标度关系和超标度关系,另一点则与平均场理论的 <math>d</math> 无关指数相关。前者决定了当 <math>d<4\ </math> 时的主导临界点行为。<math>d=4</math> 时,这两个不动点重合,指数现在是平均场理论的指数,但在平均场幂律中增加了对数因子。对于 <math>d>4</math>,两固定点再次分开,此时主导临界点行为源自平均场理论的指数。综上所述,两固定点产生的影响覆盖所有 <math>d\ </math>的取值范围,但是随着 <math>d\ </math>取值的变化,主导临界点行为会在二者之间切换。 |
| | | |
| ==Origin of homogeneity; block spins 齐次性的成因与块自旋== | | ==Origin of homogeneity; block spins 齐次性的成因与块自旋== |
第320行: |
第320行: |
| length <math>\xi</math> (Fig. 2). | | length <math>\xi</math> (Fig. 2). |
| | | |
− | 在格子自旋模型([[伊辛模型 Ising Model|'''伊辛模型''']])中,假设有许多自旋块,每一个的线性尺寸为<math>L\ </math>,因此包含<math>L^d</math>,而<math>L</math>远小于发散关联长度<math>\xi</math>(图2)。 | + | 在格子自旋模型([[伊辛模型 Ising Model|'''伊辛模型''']])中,假设有许多自旋块,每一个的线性尺寸为 <math>L\ </math>,因此包含 <math>L^d</math>,而 <math>L</math> 远小于发散关联长度 <math>\xi</math>(图2)。 |
| | | |
| [[Image:scaling_laws_widom_nocaption_Fig2.png|thumb|300px|right|Block spins|链接=Special:FilePath/Scaling_laws_widom_nocaption_Fig2.png]] | | [[Image:scaling_laws_widom_nocaption_Fig2.png|thumb|300px|right|Block spins|链接=Special:FilePath/Scaling_laws_widom_nocaption_Fig2.png]] |
第335行: |
第335行: |
| f(L^yt, | | f(L^yt, |
| L^xH) \equiv L^df(t,H); </math> | | L^xH) \equiv L^df(t,H); </math> |
− | 每一个自旋块通过与相邻块的共同边界相互作用。在对应的重标度模型中可以将它们视作单独的自旋。每个块的大小都是有限的,因此其内部的自旋只对系统的自由能提供解析项。自由能密度(单位自旋自由能)中包含临界点奇点及其指数的部分源自于自旋块间的相互作用。设自由能密度为<math>f(t,H)\ </math>,它是温度(由<math>t=T/T_c-1</math>)和磁场强度<math>H\ .</math>的函数。在重标度后的图像中,相关长度与原始图像中相同,但以格子间距的数量来度量,前者比后者小<math>L\ </math>倍。因此,重标度模型实际上比原始模型离临界点更远。当逼近临界点时,<math>H</math>和<math>t</math>趋近于0,重标度模型中的有效<math>H</math>和<math>t</math>为<math>L^xH</math>和<math>L^yt</math>,其中<math>x</math>和<math>y\ ,</math>是正指数。从原始模型的角度来看,每个块的自旋对自由能奇异部分的贡献是<math>L^df(t,H)\ </math>,而对重标度模型来说,则是<math>f(L^yt, L^xH)\ </math>。因此有:{{NumBlk|1=:|2=<math>f(L^yt, | + | 每一个自旋块通过与相邻块的共同边界相互作用。在对应的重标度模型中可以将它们视作单独的自旋。每个块的大小都是有限的,因此其内部的自旋只对系统的自由能提供解析项。自由能密度(单位自旋自由能)中包含临界点奇点及其指数的部分源自于自旋块间的相互作用。设自由能密度为<math>f(t,H)\ </math>,它是温度(由 <math>t=T/T_c-1</math>)和磁场强度 <math>H\ </math>的函数。在重标度后的图像中,相关长度与原始图像中相同,但以格子间距的数量来度量,前者比后者小 <math>L\ </math>倍。因此,重标度模型实际上比原始模型离临界点更远。当逼近临界点时,<math>H</math> 和 <math>t</math>趋近于0,重标度模型中的有效 <math>H</math> 和<math>t</math> 为 <math>L^xH</math> 和 <math>L^yt</math>,其中 <math>x</math> 和 <math>y\ ,</math> 是正指数。从原始模型的角度来看,每个块的自旋对自由能奇异部分的贡献是 <math>L^df(t,H)\ </math>,而对重标度模型来说,则是 <math>f(L^yt, L^xH)\ </math>。因此有:{{NumBlk|1=:|2=<math>f(L^yt, |
| L^xH) \equiv L^df(t,H);</math>|3={{EquationRef|20}}}} | | L^xH) \equiv L^df(t,H);</math>|3={{EquationRef|20}}}} |
| | | |
| i.e., by ({{EquationNote|1=1}}), <math>f(t,H)</math> is a homogeneous function of <math>t</math> and <math>H^{y/x}</math> of degree <math>d/y\ .</math> | | i.e., by ({{EquationNote|1=1}}), <math>f(t,H)</math> is a homogeneous function of <math>t</math> and <math>H^{y/x}</math> of degree <math>d/y\ .</math> |
| | | |
− | 由({{EquationNote|1=1}})可得,<math>f(t,H)</math>是<math>t</math>和<math>H^{y/x}</math>的<math>d/y\ </math>次齐次函数。 | + | 由({{EquationNote|1=1}})可得,<math>f(t,H)</math> 是 <math>t</math> 和 <math>H^{y/x}</math> 的 <math>d/y\ </math>次齐次函数。 |
| | | |
| Therefore, by ({{EquationNote|1=2}}), <math>f(t,H)=t^{d/y} | | Therefore, by ({{EquationNote|1=2}}), <math>f(t,H)=t^{d/y} |
第347行: |
第347行: |
| 2\beta + \gamma =2</math> are known to follow. | | 2\beta + \gamma =2</math> are known to follow. |
| | | |
− | 因此,由({{EquationNote|1=2}})得<math>f(t,H)=t^{d/y} | + | 因此,由({{EquationNote|1=2}})得 <math>f(t,H)=t^{d/y} |
− | \phi(H^{y/x}/t)=H^{d/x}\psi(t/H^{y/x})</math>,其中<math>\phi</math>和<math>\psi</math>仅仅是<math>H^{y/x}/t\ </math>的函数。当<math>H=0</math>,由第一个关系式可得<math>f(t,0)=\phi(0)t^{d/y}\ </math>。但是<math>f(t,0)</math>的两个温度导数对单位自旋热容有贡献,且以<math>t^{-\alpha}\ </math>发散,所以有<math>d/y=2-\alpha\ </math>。另外,在临界等温线<math>(t=0)\ </math>上,由第二个关系式可得<math>f(0,H)=\psi(0)H^{d/x}\ </math>。但单位自旋磁化强度<math>-(\partial f/\partial H)_T\ </math>随<math>H^{d/x-1}\ </math>衰减,因此<math>d/x-1=1/\delta\ </math>。指数<math>d/x</math>与<math>d/y</math>可以由热容指数<math>\alpha</math>和临界等温线指数<math>\delta\ </math>定义。同时再有单位自旋磁化强度<math>-(\partial | + | \phi(H^{y/x}/t)=H^{d/x}\psi(t/H^{y/x})</math>,其中 <math>\phi</math> 和 <math>\psi</math> 仅仅是 <math>H^{y/x}/t\ </math> 的函数。当 <math>H=0</math>,由第一个关系式可得 <math>f(t,0)=\phi(0)t^{d/y}\ </math>。但是 <math>f(t,0)</math> 的两个温度导数对单位自旋热容有贡献,且以 <math>t^{-\alpha}\ </math>发散,所以有<math>d/y=2-\alpha\ </math>。另外,在临界等温线<math>(t=0)\ </math>上,由第二个关系式可得<math>f(0,H)=\psi(0)H^{d/x}\ </math>。但单位自旋磁化强度<math>-(\partial f/\partial H)_T\ </math>随 <math>H^{d/x-1}\ </math>衰减,因此 <math>d/x-1=1/\delta\ </math>。指数 <math>d/x</math> 与 <math>d/y</math> 可以由热容指数 <math>\alpha</math> 和临界等温线指数 <math>\delta\ </math>定义。同时再有单位自旋磁化强度<math>-(\partial |
− | f/\partial H)_T</math>,({{EquationNote|1=20}})中<math>f(t,H)</math>的齐次形式与({{EquationNote|1=7}})式<math>H(t,M)</math>的齐次形式等价,由此得到标度律<math>\gamma=\beta(\delta-1)</math>和<math>\alpha + | + | f/\partial H)_T</math>,({{EquationNote|1=20}})中<math>f(t,H)</math> 的齐次形式与({{EquationNote|1=7}})式 <math>H(t,M)</math> 的齐次形式等价,由此得到标度律 <math>\gamma=\beta(\delta-1)</math> 和<math>\alpha + |
| 2\beta + \gamma =2</math>。 | | 2\beta + \gamma =2</math>。 |
| | | |
第357行: |
第357行: |
| h(r,t) \equiv | | h(r,t) \equiv |
| L^{p}h(r/L,L^yt); </math> | | L^{p}h(r/L,L^yt); </math> |
− | 在重标度模型中,<math>t</math>变为<math>L^yt\ </math>,<math>r</math>则为<math>r/L\ </math>。对于关联函数<math>h(r,t)\ </math>标度律({{EquationNote|1=10}}),也存在某一指数<math>p\ </math>使<math>L^p</math>成为联系原始模型和重标度模型的因子;所以有:{{NumBlk|1=:|2=<math>h(r,t) \equiv | + | 在重标度模型中,<math>t</math> 变为<math>L^yt\ </math>,<math>r</math> 则为 <math>r/L\ </math>。对于关联函数 <math>h(r,t)\ </math>标度律({{EquationNote|1=10}}),也存在某一指数 <math>p\ </math>使 <math>L^p</math> 成为联系原始模型和重标度模型的因子;所以有:{{NumBlk|1=:|2=<math>h(r,t) \equiv |
| L^{p}h(r/L,L^yt);</math>|3={{EquationRef|21}}}} | | L^{p}h(r/L,L^yt);</math>|3={{EquationRef|21}}}} |
| | | |
第364行: |
第364行: |
| :<math>\label{eq:22} | | :<math>\label{eq:22} |
| h(r,t)\equiv r^p G(r/t^{-1/y}) </math> | | h(r,t)\equiv r^p G(r/t^{-1/y}) </math> |
− | 即<math>h(r,t)</math>是<math>r</math>和<math>t^{-1/y}\ </math>的<math>p</math>次齐次函数。再由齐次性表达式({{EquationNote|1=2}})有:{{NumBlk|1=:|2=<math>h(r,t)h(r,t)\equiv r^p G(r/t^{-1/y})</math>|3={{EquationRef|22}}}} | + | 即 <math>h(r,t)</math> 是 <math>r</math>和 <math>t^{-1/y}\ </math> 的 <math>p</math> 次齐次函数。再由齐次性表达式({{EquationNote|1=2}})有:{{NumBlk|1=:|2=<math>h(r,t)h(r,t)\equiv r^p G(r/t^{-1/y})</math>|3={{EquationRef|22}}}} |
| | | |
| with a scaling function <math>G\ .</math> Comparing this with ({{EquationNote|1=10}}), and recalling that the correlation length <math>\xi</math> diverges at the critical point as <math>t^{-\nu}</math> with exponent <math>\nu\ ,</math> we identify <math>p=-(d-2+\eta)</math> and <math>1/y=\nu\ .</math> The scaling law <math>(2-\eta)\nu=\gamma\ ,</math> which was a consequence of the homogeneity of form of <math>h(r,t)\ ,</math> again holds, while from <math>1/y=\nu</math> and the earlier <math>d/y=2-\alpha</math> we now have the hyperscaling law ({{EquationNote|1=17}}), <math>d\nu=2-\alpha\ .</math> | | with a scaling function <math>G\ .</math> Comparing this with ({{EquationNote|1=10}}), and recalling that the correlation length <math>\xi</math> diverges at the critical point as <math>t^{-\nu}</math> with exponent <math>\nu\ ,</math> we identify <math>p=-(d-2+\eta)</math> and <math>1/y=\nu\ .</math> The scaling law <math>(2-\eta)\nu=\gamma\ ,</math> which was a consequence of the homogeneity of form of <math>h(r,t)\ ,</math> again holds, while from <math>1/y=\nu</math> and the earlier <math>d/y=2-\alpha</math> we now have the hyperscaling law ({{EquationNote|1=17}}), <math>d\nu=2-\alpha\ .</math> |
| | | |
− | 其中<math>G\ </math>是标度函数。与({{EquationNote|1=10}})对比,由临界点处的关联长度服从({{EquationNote|1=11}}),我们可得<math>p=-(d-2+\eta)</math>以及<math>1/y=\nu\ </math>。由此齐次性表达式<math>h(r,t)\ </math>得出的标度律<math>(2-\eta)\nu=\gamma\ </math>依然成立,且再由<math>1/y=\nu</math>和<math>d/y=2-\alpha</math>,得到超标度律({{EquationNote|1=17}})—<math>d\nu=2-\alpha\ </math>。 | + | 其中 <math>G\ </math>是标度函数。与({{EquationNote|1=10}})对比,由临界点处的关联长度服从({{EquationNote|1=11}}),我们可得<math>p=-(d-2+\eta)</math> 以及 <math>1/y=\nu\ </math>。由此齐次性表达式 <math>h(r,t)\ </math>得出的标度律<math>(2-\eta)\nu=\gamma\ </math>依然成立,且再由<math>1/y=\nu</math> 和 <math>d/y=2-\alpha</math>,得到超标度律({{EquationNote|1=17}}) — <math>d\nu=2-\alpha\ </math>。 |
| | | |
| The block-spin picture thus yields the critical-point scaling of the thermodynamic and correlation functions, and both the <math>d</math>-independent and <math>d</math>-dependent relations among the scaling exponents. The essence of this picture is confirmed in the renormalization-group theory [19,20]. | | The block-spin picture thus yields the critical-point scaling of the thermodynamic and correlation functions, and both the <math>d</math>-independent and <math>d</math>-dependent relations among the scaling exponents. The essence of this picture is confirmed in the renormalization-group theory [19,20]. |
| | | |
− | 因此,块自旋图产生了热力学函数和相关函数的临界点标度关系,以及标度指数之间的<math>d</math>无关和<math>d</math>依赖关系。重正化群理论证实了块自旋图的本质。 | + | 因此,块自旋图产生了热力学函数和相关函数的临界点标度关系,以及标度指数之间的 <math>d</math> 无关和 <math>d</math> 依赖关系。重正化群理论证实了块自旋图的本质。 |
| | | |
| == References == | | == References == |