更改

添加1,235字节 、 2021年12月31日 (五) 14:30
第35行: 第35行:  
在这一庞大的范围内,生命事实上利用相同的基本构成要素和建造过程创造了令人惊叹的各种各样的形式、功能和动力学行为。所有生命的运行都是通过把物理或化学来源的能量转化为有机分子,这些有机分子通过新陈代谢过程构建、维持和繁殖复杂的、高度组织化的系统。这又是通过两个截然不同而又密切相互作用的系统运行实现的:遗传密码系统(储存及处理构建和维持生物体运作的信息与“指令”)和新陈代谢系统(获取、转化、分配能量和物质,用于维持、增长和繁殖)。人们在从分子到生物体的各个层级阐释这两个系统方面已经取得了很大的进展。然而,想要了解信息处理(基因组学)如何与能量和资源处理(新陈代谢)相互融合以维持生命,却依然是一个巨大的挑战。寻找作为这些系统结构、动力和结合的普遍基础原则是理解生命的根本所在,也是在医学、农业、环境学等不同背景中管理生物和社会经济系统的基础。
 
在这一庞大的范围内,生命事实上利用相同的基本构成要素和建造过程创造了令人惊叹的各种各样的形式、功能和动力学行为。所有生命的运行都是通过把物理或化学来源的能量转化为有机分子,这些有机分子通过新陈代谢过程构建、维持和繁殖复杂的、高度组织化的系统。这又是通过两个截然不同而又密切相互作用的系统运行实现的:遗传密码系统(储存及处理构建和维持生物体运作的信息与“指令”)和新陈代谢系统(获取、转化、分配能量和物质,用于维持、增长和繁殖)。人们在从分子到生物体的各个层级阐释这两个系统方面已经取得了很大的进展。然而,想要了解信息处理(基因组学)如何与能量和资源处理(新陈代谢)相互融合以维持生命,却依然是一个巨大的挑战。寻找作为这些系统结构、动力和结合的普遍基础原则是理解生命的根本所在,也是在医学、农业、环境学等不同背景中管理生物和社会经济系统的基础。
   −
=== 潜藏在复杂性下的简单性:[[克莱伯定律]]、[[自相似|自相似性]]和规模经济 ===
+
=== 潜藏在复杂性下的简单性:网络原理与[[克莱伯定律]]、[[自相似|自相似性]]和[[异速生长律]] ===
1932年,著名的生理学家马克斯·克莱伯 Max Kleiber提出[[克莱伯定律]],之后被更多的研究人员推广到所有的多细胞生物类群,甚至是单细胞生物体的情况。 尽管生命高度复杂、极度多样,尽管新陈代谢或许是宇宙中最复杂的物理化学过程,但是代谢率展示出了所有生物体的非凡系统规律。如图1所示,在用对数坐标变换相对于体重绘制图像时,代谢率以人们可以想象到的最简单的方式随着体重的变化而按比例变化,它成了一条直线,表明了简单的幂律标度关系 Power Law Scaling。
+
规模法则在生物学中的机理源头根植于多重网络的通用数学、动力学和组织特性,这些网络将能量、物质和信息分配至细胞、线粒体等渗透进生物体内的细微点。由于生物网络的结构如此多样,并与规模法则的同一性形成鲜明对比,它们的一般属性必须独立于它们各自的进化设计之外。
 +
 
 +
==== 空间填充 ====
 +
空间填充背后的理念很简单,也很直观。粗略地说,它意味着网络的触角必须延伸至它所服务的整个系统的各个角落,正如图3–7所示。更加具体地说,无论网络的几何学和拓扑结构如何,它都必须服务生物体的所有生物子单元或子系统。我们可以用一个更加熟悉的例子来理解:人体循环系统是一个经典的分级网络,心脏会向始于主动脉的多层次网络输送血液,经过规模不断缩小的血管到达最小的毛细血管,然后再通过网络系统返回至心脏。空间填充就是指毛细血管作为终端单元或网络的末支,必须服务于人体内的每一个细胞,高效地为细胞供给足够的血液和氧气。事实上,这一切只需要毛细血管距离细胞足够近,以使得足够的氧气能够高效地穿透毛细血管壁,并通过细胞的外膜。
    
== 城市和公司是大型的生物体吗? ==
 
== 城市和公司是大型的生物体吗? ==
 +
类似于生物网络的是,城市中的许多基础设施网络也是空间填充的,例如,天然气、水和电等公用事业网络的终端单元或终点都必须为构成城市的所有不同建筑物提供供给。连接你的房屋与城市水路和电路的管道就像毛细血管,可以把你的房屋想象成细胞。与此相似的是,公司的所有雇员都可以被看作终端单元,他们必须通过连接首席执行官与管理层的多重网络获得资源(如工资)和信息的供给。
    
== 地球科学中的规模法则 ==
 
== 地球科学中的规模法则 ==
596

个编辑