更改

添加30字节 、 2022年1月12日 (三) 03:03
无编辑摘要
第75行: 第75行:  
The yucca, Yucca whipplei, is pollinated exclusively by Tegeticula maculata, a yucca moth that depends on the yucca for survival. The moth eats the seeds of the plant, while gathering pollen. The pollen has evolved to become very sticky, and remains on the mouth parts when the moth moves to the next flower. The yucca provides a place for the moth to lay its eggs, deep within the flower away from potential predators.
 
The yucca, Yucca whipplei, is pollinated exclusively by Tegeticula maculata, a yucca moth that depends on the yucca for survival. The moth eats the seeds of the plant, while gathering pollen. The pollen has evolved to become very sticky, and remains on the mouth parts when the moth moves to the next flower. The yucca provides a place for the moth to lay its eggs, deep within the flower away from potential predators.
   −
对丝兰(''Yucca whipplei'')这种植物只有斑点豆斑蛾才能够为其授粉,而斑点豆斑蛾是一种依靠丝兰生存的丝兰蛾。<ref>{{cite journal |doi=10.1073/pnas.96.16.9178 |title=Forty million years of mutualism: Evidence for Eocene origin of the yucca-yucca moth association |journal=Proc. Natl. Acad. Sci. USA |date=August 1999 |first=Olle |last=Pellmyr |pmid=10430916 |author2=James Leebens-Mack |volume=96 |issue=16 |pmc=17753 |pages=9178–9183 |bibcode=1999PNAS...96.9178P|doi-access=free }}</ref>花粉会随附在蛾进食植物的种子之时被采集。花粉已经进化得非常粘着,当飞蛾移动到下一朵花时仍然会留在其口腔的部分。丝兰则在花的深处为蛾提供了一个产卵的地方,来远离潜在的捕食者。
+
对丝兰(''Yucca whipplei'')这种植物只有斑点豆斑蛾才能够为其授粉,而斑点豆斑蛾是一种依靠丝兰生存的丝兰蛾。<ref>{{cite journal |doi=10.1073/pnas.96.16.9178 |title=Forty million years of mutualism: Evidence for Eocene origin of the yucca-yucca moth association |journal=Proc. Natl. Acad. Sci. USA |date=August 1999 |first=Olle |last=Pellmyr |pmid=10430916 |author2=James Leebens-Mack |volume=96 |issue=16 |pmc=17753 |pages=9178–9183 |bibcode=1999PNAS...96.9178P|doi-access=free }}</ref>花粉会随附在蛾进食植物的种子的过程之中被采集。花粉已经进化得非常粘着,当飞蛾移动到下一朵花时仍然会留在其口腔的部分。丝兰则在花的深处为蛾提供了一个产卵的地方,来远离潜在的捕食者。
    
====鸟类和鸟类传粉的花朵====
 
====鸟类和鸟类传粉的花朵====
第85行: 第85行:  
Hummingbirds and ornithophilous (bird-pollinated) flowers have evolved a mutualistic relationship. The flowers have nectar suited to the birds' diet, their color suits the birds' vision and their shape fits that of the birds' bills. The blooming times of the flowers have also been found to coincide with hummingbirds' breeding seasons. The floral characteristics of ornithophilous plants vary greatly among each other compared to closely related insect-pollinated species. These flowers also tend to be more ornate, complex, and showy than their insect pollinated counterparts. It is generally agreed that plants formed coevolutionary relationships with insects first, and ornithophilous species diverged at a later time. There is not much scientific support for instances of the reverse of this divergence: from ornithophily to insect pollination. The diversity in floral phenotype in ornithophilous species, and the relative consistency observed in bee-pollinated species can be attributed to the direction of the shift in pollinator preference.
 
Hummingbirds and ornithophilous (bird-pollinated) flowers have evolved a mutualistic relationship. The flowers have nectar suited to the birds' diet, their color suits the birds' vision and their shape fits that of the birds' bills. The blooming times of the flowers have also been found to coincide with hummingbirds' breeding seasons. The floral characteristics of ornithophilous plants vary greatly among each other compared to closely related insect-pollinated species. These flowers also tend to be more ornate, complex, and showy than their insect pollinated counterparts. It is generally agreed that plants formed coevolutionary relationships with insects first, and ornithophilous species diverged at a later time. There is not much scientific support for instances of the reverse of this divergence: from ornithophily to insect pollination. The diversity in floral phenotype in ornithophilous species, and the relative consistency observed in bee-pollinated species can be attributed to the direction of the shift in pollinator preference.
   −
蜂鸟和喜鸟类(通过鸟类传粉)的花演化出了一种互惠的关系。这些花的花蜜合于鸟类的饮食,颜色亦合于鸟类的视觉,形状则合于鸟的喙。这些花的开放时间还被发现与蜂鸟的繁殖季节相吻合。同与昆虫传粉密切相关的植物相比,喜鸟类植物的花部特征差异很大。这些花也会较昆虫授粉的同类更华丽、复杂和艳丽。被普遍认为的是,植物首先与昆虫形成共同演化关系,喜鸟类植物在后期分化。从鸟类学到昆虫授粉,并没有多少科学依据支持此分歧中相反的例子。喜鸟类植物花器官表型的多样性和蜜蜂传粉物种花器官表型的相对一致性可以归因于传粉者偏好的转变方向。<ref>{{cite journal |last1=Kay |first1=Kathleen M.|last2=Reeves |first2=Patrick A. |last3=Olmstead |first3=Richard G. |last4=Schemske|first4=Douglas W. |s2cid=2991957|title=Rapid speciation and the evolution of hummingbird pollination in neotropical Costus subgenus Costus (Costaceae): evidence from nrDNA ITS and ETS sequences |journal=American Journal of Botany |date=2005 |volume=92 |issue=11|pages=1899–1910 |doi=10.3732/ajb.92.11.1899 |pmid=21646107|doi-access=free }}</ref>
+
蜂鸟和喜鸟类(通过鸟类传粉)的花演化出了一种互惠的关系。这些花的花蜜合于鸟类的饮食,它们的颜色亦合于鸟类的视觉,它们的形状则合于鸟的喙。这些花的开放时间还被发现与蜂鸟的繁殖季节相吻合。同与被昆虫传粉密切相关的植物相比,喜鸟类植物的花部特征差异很大。这些花也会较昆虫授粉的同类更华丽、复杂和艳丽。被普遍认为的是,植物首先与昆虫形成共同演化关系,喜鸟类植物在后期分化。从鸟类学到昆虫授粉,并没有多少科学依据支持此分歧中相反的例子。喜鸟类植物花器官表型的多样性和蜜蜂传粉物种花器官表型的相对一致性可以归因于传粉者偏好的转变方向。<ref>{{cite journal |last1=Kay |first1=Kathleen M.|last2=Reeves |first2=Patrick A. |last3=Olmstead |first3=Richard G. |last4=Schemske|first4=Douglas W. |s2cid=2991957|title=Rapid speciation and the evolution of hummingbird pollination in neotropical Costus subgenus Costus (Costaceae): evidence from nrDNA ITS and ETS sequences |journal=American Journal of Botany |date=2005 |volume=92 |issue=11|pages=1899–1910 |doi=10.3732/ajb.92.11.1899 |pmid=21646107|doi-access=free }}</ref>
    
Flowers have converged to take advantage of similar birds.<ref name="Brown">{{cite journal |title=Convergence, Competition, and Mimicry in a Temperate Community of Hummingbird-Pollinated Flowers|author1=Brown James H. |author2=Kodric-Brown Astrid |s2cid=53604204 |journal=Ecology |year=1979 |volume=60 |issue=5 |pages=1022–1035 |doi=10.2307/1936870|jstor=1936870}}</ref> Flowers compete for pollinators, and adaptations reduce unfavourable effects of this competition. The fact that birds can fly during inclement weather makes them more efficient pollinators where bees and other insects would be inactive. Ornithophily may have arisen for this reason in isolated environments with poor insect colonization or areas with plants which flower in the winter.<ref name="Brown"/><ref>{{cite journal |last1=Cronk |first1=Quentin |last2=Ojeda |first2=Isidro |title=Bird-pollinated flowers in an evolutionary and molecular context |journal=Journal of Experimental Botany |date=2008 |volume=59 |issue=4 |pages=715–727 |doi=10.1093/jxb/ern009|pmid=18326865|doi-access=free }}</ref> Bird-pollinated flowers usually have higher volumes of nectar and higher sugar production than those pollinated by insects.<ref name="Stiles">{{cite journal |title=Geographical Aspects of Bird Flower Coevolution, with Particular Reference to Central America |author=Stiles, F. Gary |journal=Annals of the Missouri Botanical Garden |year=1981 |volume=68 |issue=2 |pages=323–351 |doi=10.2307/2398801|jstor=2398801|url=https://www.biodiversitylibrary.org/part/38387 }}</ref>
 
Flowers have converged to take advantage of similar birds.<ref name="Brown">{{cite journal |title=Convergence, Competition, and Mimicry in a Temperate Community of Hummingbird-Pollinated Flowers|author1=Brown James H. |author2=Kodric-Brown Astrid |s2cid=53604204 |journal=Ecology |year=1979 |volume=60 |issue=5 |pages=1022–1035 |doi=10.2307/1936870|jstor=1936870}}</ref> Flowers compete for pollinators, and adaptations reduce unfavourable effects of this competition. The fact that birds can fly during inclement weather makes them more efficient pollinators where bees and other insects would be inactive. Ornithophily may have arisen for this reason in isolated environments with poor insect colonization or areas with plants which flower in the winter.<ref name="Brown"/><ref>{{cite journal |last1=Cronk |first1=Quentin |last2=Ojeda |first2=Isidro |title=Bird-pollinated flowers in an evolutionary and molecular context |journal=Journal of Experimental Botany |date=2008 |volume=59 |issue=4 |pages=715–727 |doi=10.1093/jxb/ern009|pmid=18326865|doi-access=free }}</ref> Bird-pollinated flowers usually have higher volumes of nectar and higher sugar production than those pollinated by insects.<ref name="Stiles">{{cite journal |title=Geographical Aspects of Bird Flower Coevolution, with Particular Reference to Central America |author=Stiles, F. Gary |journal=Annals of the Missouri Botanical Garden |year=1981 |volume=68 |issue=2 |pages=323–351 |doi=10.2307/2398801|jstor=2398801|url=https://www.biodiversitylibrary.org/part/38387 }}</ref>
68

个编辑