第28行: |
第28行: |
| 1949年,冯 · 诺依曼在伊利诺伊大学厄巴纳-香槟分校的演讲中明确指出,他的目标是设计一种机器,其复杂性可以自动增长,类似于自然选择下的生物有机体。他问,机器要想进化,必须跨越多大的复杂性门槛。他的答案是指定一个抽象的机器,当运行时,它会自我复制。在他的设计中,自我复制机械包括3个部分: 一个对(‘蓝图’或程序)本身的“描述”,一个可以读取任何描述并构造机器的通用构造机制(无描述) ,以及一个可以复制任何描述的通用复印机。在使用通用构造函数构造描述中编码的新机器之后,使用复制机器创建描述的副本,并将该副本传递给新机器,从而生成可以继续复制的原始机器的工作复制。有些机器会向后执行此操作,复制描述,然后构建一台机器。至关重要的是,自我复制机器可以通过不断累积描述的突变而不是机器本身来进化,从而获得在复杂性中增长的能力。 | | 1949年,冯 · 诺依曼在伊利诺伊大学厄巴纳-香槟分校的演讲中明确指出,他的目标是设计一种机器,其复杂性可以自动增长,类似于自然选择下的生物有机体。他问,机器要想进化,必须跨越多大的复杂性门槛。他的答案是指定一个抽象的机器,当运行时,它会自我复制。在他的设计中,自我复制机械包括3个部分: 一个对(‘蓝图’或程序)本身的“描述”,一个可以读取任何描述并构造机器的通用构造机制(无描述) ,以及一个可以复制任何描述的通用复印机。在使用通用构造函数构造描述中编码的新机器之后,使用复制机器创建描述的副本,并将该副本传递给新机器,从而生成可以继续复制的原始机器的工作复制。有些机器会向后执行此操作,复制描述,然后构建一台机器。至关重要的是,自我复制机器可以通过不断累积描述的突变而不是机器本身来进化,从而获得在复杂性中增长的能力。 |
| | | |
− | '''''【终译版】'''''冯 · 诺依曼1949年在伊利诺伊大学厄巴纳-香槟分校的演讲中提到,<ref name="TSRA" />他的目标是设计一种复杂性可以自动增长(类似于自然选择下有机生命体)的机器。当被问到机器要跨越多高的复杂性阈值才能够进化时,<ref name="Rocha1998" />他给出了一个抽象的''自复制机''(Self-Replicating Machine)模型。在他的设计中,''自复制机''包含三个组件:1、关于自身结构的“描述文件”(类似于蓝图或编码);2、能够阅读并按照任何“描述文件”述构建机器的''通用构造模块''(Universal Constructor Mechanism),构建过程不包括生成“描述文件”;3、能够复制任何“描述文件”的''通用复制模块''(Universal Copy Machine)。在''通用构造模块''基于“描述文件”构建新机器后,使用''通用复制模块''生成该“描述文件”的副本并放入到新机器中,从而生成该''自复制机''的复制。有些''自复制机''会先复制“描述文件”,然后再构建新机器并放入。但无论顺序如何,''自复制机''可以通过累积“描述文件”的突变来进化(获得复杂性增长),而不是通过机器自身的变化来实现复杂性的增长。<ref name="Rocha1998" /><ref name="Brenner2012" /> (译者:可类比物种的进化是种群基因的逐渐变化而非某一生物个体突然进化。) | + | '''''【终译版】'''''冯 · 诺依曼1949年在伊利诺伊大学厄巴纳-香槟分校的演讲中提到,<ref name="TSRA" />他的目标是设计一种复杂性可以自动增长(类似于自然选择下有机生命体)的机器。当被问到机器要跨越多高的复杂性阈值才能够进化时,<ref name="Rocha1998" />他给出了一个抽象的''自复制机''(Self-Replicating Machine)模型。在他的设计中,''自复制机''包含三个组件:1、关于自身结构的“描述文件”(类似于蓝图或编码);2、能够阅读并按照任何“描述文件”构建机器的''通用构造模块''(Universal Constructor Mechanism),但构建过程不包括生成“描述文件”;3、能够复制任何“描述文件”的''通用复制模块''(Universal Copy Machine)。在 ''通用构造模块'' 基于“描述文件”构建新机器后,使用 ''通用复制模块'' 生成该“描述文件”的副本并放入到新机器中,进而生成该 ''自复制机'' 的复制。有些 ''自复制机'' 会先复制“描述文件”,然后再构建新机器并放入。但无论顺序如何,''自复制机'' 可以通过累积“描述文件”的突变来进化(获得复杂性增长),而不是通过机器自身的变化来实现复杂性的增长。<ref name="Rocha1998" /><ref name="Brenner2012" /> (译者:可类比物种的进化是种群基因形的逐渐变化而非某一生物个体突然进化。) |
| | | |
| | | |
第52行: |
第52行: |
| = 目的 = | | = 目的 = |
| | | |
− | [[File:Von Neuman Self-replication 2.jpg|thumb|400px|right|Von Neumann's System of Self-Replication Automata with the ability to evolve (Figure adapted from [[Luis M. Rocha|Luis Rocha]]'s Lecture Notes at Indiana University<ref name=Rocha_lec_notes>{{citation |last=Rocha|first=Luis M.| year=2015 |title=Lecture Notes of I-485-Biologically Inspired Computing Course, Indiana University|chapter=Chapter 6. Von Neumann and Natural Selection.|chapter-url=https://homes.luddy.indiana.edu/rocha/academics/i-bic/pdfs/ibic_lecnotes_c6.pdf|url=https://homes.luddy.indiana.edu/rocha/academics/i-bic/pdfs/ibic_lecnotes.pdf}}</ref>). i) the self-replicating system is composed of several automata plus a separate description (an encoding formalized as a [[Turing Machine|Turing 'tape']]) of all the automata: Universal Constructor (A), Universal Copier (B), Operating System (C), extra functions not involved with replication (D), and separate description Φ(A,B,C,D) encoding all automata. ii) (Top) Universal Constructor produces (decodes) automata from their description (''active'' mode of description); (Bottom) Universal Copier copies description of automata (''passive'' mode of description); Mutations Φ(D') to description Φ(D) (not changes in automaton D directly) propagate to the set of automata produced in next generation, allowing (automata + description) system to continue replicating and evolving (D → D').<ref name=Rocha1998/> The active process of construction from a description parallels [[Translation (biology)|DNA translation]], the passive process of copying the description parallels [[DNA replication]], and inheritance of mutated descriptions parallels [[Mutation|Vertical inheritance of DNA mutations]] in Biology,<ref name=Rocha1998/><ref name=Brenner2012/> and were proposed by Von Neumann before the discovery of the structure of the DNA molecule and how it is separately translated and replicated in the Cell.<ref name=Rocha_lec_notes/>'''''【终译版】'''''冯·诺依曼的具有进化能力的自复制自动机系统(图改编自路易斯·罗查在印第安纳大学的讲稿)。i) 自复制系统包含几个自动机加上所有自动机的单独“描述文件”(形式为图灵“磁带”编码):通用构造模块(A)、通用复印模块(B)、操作系统模块(C)、与复制无关的额外功能模块(D)以及对所有自动机编码的单独“描述文件”Φ(A、B、C、D)。ii)(顶部)通用构造模块根据其“描述文件”生成(解码)自动机(描述的活动模式);(底部)通用复印模块复制自动机“描述文件”(被动描述模式);从Φ(D')到描述Φ(D)的突变(不是自动机D中的直接变化)传播到下一代产生的自动机上,允许(自动机各模块+“描述文件”)系统继续复制和进化(D→ D')。“描述文件”的主动构建过程与DNA翻译对应,复制“描述文件”的被动过程与DNA复制对应,突变“描述文件”的遗传与生物学中DNA突变的垂直遗传对应,在发现DNA分子的结构以及DNA分子在细胞中如何被分别翻译和复制之前,冯·诺依曼就已经提出了这一观点。|链接=Special:FilePath/Von_Neuman_Self-replication_2.jpg]] | + | [[File:Von Neuman Self-replication 2.jpg|thumb|400px|right|Von Neumann's System of Self-Replication Automata with the ability to evolve (Figure adapted from [[Luis M. Rocha|Luis Rocha]]'s Lecture Notes at Indiana University<ref name=Rocha_lec_notes>{{citation |last=Rocha|first=Luis M.| year=2015 |title=Lecture Notes of I-485-Biologically Inspired Computing Course, Indiana University|chapter=Chapter 6. Von Neumann and Natural Selection.|chapter-url=https://homes.luddy.indiana.edu/rocha/academics/i-bic/pdfs/ibic_lecnotes_c6.pdf|url=https://homes.luddy.indiana.edu/rocha/academics/i-bic/pdfs/ibic_lecnotes.pdf}}</ref>). i) the self-replicating system is composed of several automata plus a separate description (an encoding formalized as a [[Turing Machine|Turing 'tape']]) of all the automata: Universal Constructor (A), Universal Copier (B), Operating System (C), extra functions not involved with replication (D), and separate description Φ(A,B,C,D) encoding all automata. ii) (Top) Universal Constructor produces (decodes) automata from their description (''active'' mode of description); (Bottom) Universal Copier copies description of automata (''passive'' mode of description); Mutations Φ(D') to description Φ(D) (not changes in automaton D directly) propagate to the set of automata produced in next generation, allowing (automata + description) system to continue replicating and evolving (D → D').<ref name=Rocha1998/> The active process of construction from a description parallels [[Translation (biology)|DNA translation]], the passive process of copying the description parallels [[DNA replication]], and inheritance of mutated descriptions parallels [[Mutation|Vertical inheritance of DNA mutations]] in Biology,<ref name=Rocha1998/><ref name=Brenner2012/> and were proposed by Von Neumann before the discovery of the structure of the DNA molecule and how it is separately translated and replicated in the Cell.<ref name=Rocha_lec_notes/>'''''【终译版】'''''冯·诺依曼的具有进化能力的自复制自动机系统(图改编自路易斯·罗查在印第安纳大学的讲稿)。i) 自复制系统包含几个自动机加上所有自动机的单独“描述文件”(形式为图灵“磁带”编码):通用构造模块(A)、通用复制模块(B)、操作系统模块(C)、与复制无关的额外功能模块(D)以及对所有自动机编码的单独“描述文件”Φ(A、B、C、D)。ii)(顶部)通用构造模块根据其“描述文件”生成(解码)自动机(描述的活动模式);(底部)通用复制模块复制自动机“描述文件”(被动描述模式);从Φ(D')到描述Φ(D)的突变(不是自动机D中的直接变化)传播到下一代产生的自动机上,允许(自动机各模块+“描述文件”)系统继续复制和进化(D→ D')。“描述文件”的主动构建过程与DNA翻译对应,复制“描述文件”的被动过程与DNA复制对应,突变“描述文件”的遗传与生物学中DNA突变的垂直遗传对应,在发现DNA分子的结构以及DNA分子在细胞中如何被分别翻译和复制之前,冯·诺依曼就已经提出了这一观点。|链接=Special:FilePath/Von_Neuman_Self-replication_2.jpg]] |
| | | |
| Von Neumann's design has traditionally been understood to be a demonstration of the logical requirements for machine self-replication.<ref name=McMullin2000/> However, it is clear that far simpler machines can achieve self-replication. Examples include trivial [[Crystal growth|crystal-like growth]], [[template replication]], and [[Langton's loops]]. But von Neumann was interested in something more profound: construction, universality, and evolution.<ref name=Rocha1998/><ref name=Brenner2012/> | | Von Neumann's design has traditionally been understood to be a demonstration of the logical requirements for machine self-replication.<ref name=McMullin2000/> However, it is clear that far simpler machines can achieve self-replication. Examples include trivial [[Crystal growth|crystal-like growth]], [[template replication]], and [[Langton's loops]]. But von Neumann was interested in something more profound: construction, universality, and evolution.<ref name=Rocha1998/><ref name=Brenner2012/> |
第69行: |
第69行: |
| 注意,更简单的自我复制 CA 结构(尤其是 Byl 循环和 Chou-Reggia 循环)不能以多种形式存在,因此可进化性非常有限。其他 CA 结构,比如 Evoloop 也是可进化的,但仍然不支持开放式进化。通常情况下,简单的复制因子并不完全包含构建机制,在一定程度上,复制因子是由其周围环境复制的信息。尽管冯 · 诺依曼设计是一个逻辑结构,但从原则上讲,它是一个可以被实例化为物理机器的设计。实际上,这个通用构造函数可以看作是对物理通用汇编程序的抽象模拟。由于对原材料及其可得性有不同的概念,环境对复制的贡献问题在某种程度上是开放的。 | | 注意,更简单的自我复制 CA 结构(尤其是 Byl 循环和 Chou-Reggia 循环)不能以多种形式存在,因此可进化性非常有限。其他 CA 结构,比如 Evoloop 也是可进化的,但仍然不支持开放式进化。通常情况下,简单的复制因子并不完全包含构建机制,在一定程度上,复制因子是由其周围环境复制的信息。尽管冯 · 诺依曼设计是一个逻辑结构,但从原则上讲,它是一个可以被实例化为物理机器的设计。实际上,这个通用构造函数可以看作是对物理通用汇编程序的抽象模拟。由于对原材料及其可得性有不同的概念,环境对复制的贡献问题在某种程度上是开放的。 |
| | | |
− | '''''【终译版】'''''由于简单的自我复制 CA 结构(特别是Byl 循环和Chou-Reggia 循环)不能以多种形式存在,因此可进化性非常有限。其他 CA 结构(例如Evoloop)在某种程度上是可进化的,但仍然不支持开放式进化。通常,简单的复制器不包含构建模块,在某种程度上是被动由周围环境复制的信息(构造相似结构)。尽管冯诺依曼设计是一种逻辑结构,但原则上它是一种可以被实例化为物理机器的设计。这个''通用构造器'' 可以看作是对''物理通用汇编器''(Physical Universal Assembler)的抽象模拟。环境对复制的影响这一问题有些开放,因为对原材料及其可用性有很多不同的概念。 | + | '''''【终译版】'''''由于简单的自我复制 CA 结构(特别是Byl 循环和Chou-Reggia 循环)不能以多种形式存在,因此可进化性非常有限。其他 CA 结构(例如Evoloop)在某种程度上是可进化的,但仍然不支持开放式进化。通常,简单的复制器不包含''通用构建模块'',在某种程度上是被动由周围环境复制的信息(构造相似结构)。尽管冯诺依曼设计是一种逻辑结构,但原则上它是一种可以被实例化为物理机器的设计。这个''通用构造模块'' 可以看作是对''物理通用汇编器''(Physical Universal Assembler)的抽象模拟。环境对复制的影响这一问题有些开放,因为对原材料及其可用性有很多不同的概念。 |
| | | |
| | | |
第88行: |
第88行: |
| 这一发现尤其引人注目,因为它先于沃森与克里克发现了 DNA 分子的结构,以及 DNA 分子在细胞中是如何分别翻译和复制的---- 尽管它遵循的是 Avery-MacLeod-McCarty 实验,该实验将 DNA 确定为活生物体中遗传信息的分子载体。DNA 分子通过不同的机制进行处理,为新构建的细胞执行其指令(翻译)和复制(复制) DNA。实现开放式进化的能力在于,就像在自然界一样,复制基因带时的错误(突变)可以导致自动机的可行变体,然后通过自然选择进化。正如布伦纳所言: | | 这一发现尤其引人注目,因为它先于沃森与克里克发现了 DNA 分子的结构,以及 DNA 分子在细胞中是如何分别翻译和复制的---- 尽管它遵循的是 Avery-MacLeod-McCarty 实验,该实验将 DNA 确定为活生物体中遗传信息的分子载体。DNA 分子通过不同的机制进行处理,为新构建的细胞执行其指令(翻译)和复制(复制) DNA。实现开放式进化的能力在于,就像在自然界一样,复制基因带时的错误(突变)可以导致自动机的可行变体,然后通过自然选择进化。正如布伦纳所言: |
| | | |
− | '''''【终译版】'''''冯诺依曼的这一贡献非常引人注目,因为它的提出在Watson和Crick发现DNA的双分子结构以及它如何在细胞中单独翻译和复制之前(尽管是在Avery-MacLeod-McCarty实验将DNA确定为活生物体遗传信息的分子载体之后)。<ref name="Rocha_lec_notes" />DNA分子通过不同的化学机制进行处理,这些机制执行其指令(翻译)并复制出新构建细胞的DNA。实现开放式进化的能力在于,类似于自然界基因,复制过程中的错误(突变)可能产生自动机的有效变体,然后自动机可以通过自然选择进化。<ref name="Rocha1998" /> 正如布伦纳(Brenner)所说: | + | '''''【终译版】'''''冯诺依曼的这一贡献非常引人注目,因为它的提出是在Watson和Crick发现DNA的双分子结构以及它如何在细胞中单独翻译和复制之前(尽管是在Avery-MacLeod-McCarty实验将DNA确定为活生物体遗传信息的分子载体之后)。<ref name="Rocha_lec_notes" />DNA分子通过不同的化学机制进行处理,这些机制执行其指令(翻译)并复制出新构建细胞的DNA。实现开放式进化的能力在于,类似于自然界基因,复制过程中的错误(突变)可能产生自动机的有效变体,然后自动机可以通过自然选择进化。<ref name="Rocha1998" /> 正如布伦纳(Brenner)所说: |
| | | |
| Turing invented the stored-program computer, and von Neumann showed that the description is separate from the universal constructor. This is not trivial. Physicist Erwin Schrödinger confused the program and the constructor in his 1944 book What is Life?, in which he saw chromosomes as ″architect's plan and builder's craft in one″. This is wrong. The code script contains only a description of the executive function, not the function itself. | | Turing invented the stored-program computer, and von Neumann showed that the description is separate from the universal constructor. This is not trivial. Physicist Erwin Schrödinger confused the program and the constructor in his 1944 book What is Life?, in which he saw chromosomes as ″architect's plan and builder's craft in one″. This is wrong. The code script contains only a description of the executive function, not the function itself. |
第107行: |
第107行: |
| 1949年,冯 · 诺依曼在伊利诺伊大学厄巴纳-香槟分校的演讲中明确指出,他的目标是设计一种机器,其复杂性可以自动增长,类似于自然选择下的生物有机体。他问,机器要想在复杂性中进化和成长,必须跨越多大的复杂性门槛。他的“原理证明”设计显示了这在逻辑上是可能的。通过使用一种将通用可编程构造器和通用复印机分离开来的架构,他展示了机器的描述(磁带)是如何在自我复制中累积突变,从而进化出更复杂的机器的(下图说明了这种可能性).这是一个非常重要的结果,因为在此之前,人们可能会推测,这种机器的存在有一个根本的逻辑障碍; 在这种情况下,确实进化和增长的复杂性的生物有机体,不可能是传统意义上的“机器”。冯 · 诺依曼的洞察力是把生命想象成一台图灵机,它同样被一台状态决定的机器“头”从一个记忆磁带中分离出来。 | | 1949年,冯 · 诺依曼在伊利诺伊大学厄巴纳-香槟分校的演讲中明确指出,他的目标是设计一种机器,其复杂性可以自动增长,类似于自然选择下的生物有机体。他问,机器要想在复杂性中进化和成长,必须跨越多大的复杂性门槛。他的“原理证明”设计显示了这在逻辑上是可能的。通过使用一种将通用可编程构造器和通用复印机分离开来的架构,他展示了机器的描述(磁带)是如何在自我复制中累积突变,从而进化出更复杂的机器的(下图说明了这种可能性).这是一个非常重要的结果,因为在此之前,人们可能会推测,这种机器的存在有一个根本的逻辑障碍; 在这种情况下,确实进化和增长的复杂性的生物有机体,不可能是传统意义上的“机器”。冯 · 诺依曼的洞察力是把生命想象成一台图灵机,它同样被一台状态决定的机器“头”从一个记忆磁带中分离出来。 |
| | | |
− | '''''【终译版】'''''正如 1949 年在伊利诺伊大学的演讲中所指出的,<ref name="TSRA" />冯·诺依曼的目标是设计一种机器,其复杂性可以自动增长(类似于自然选择下的生物有机体)。在被问到机器要跨越多高的复杂性阈值才能够进化并不断复杂时,<ref name="Rocha1998" /> 他的“理论证明”有着逻辑上的可能性。通过使用将通用可编程''“通用”构造器''与''复制器''分开的架构,他展示了机器的“描述文件”(磁带)如何在自我复制中积累突变,从而进化出更复杂的机器(下图说明这种可能性)。这一贡献之所以重要,是因为在此之前的人们可能会认为这种机器逻辑上根本无法存在:人们都曾认为能够进化和增长复杂性的生物(有机体)不可能是传统意义上的“机器”。而冯·诺依曼的见解则是将生命视为一台状态确定的图灵机,它受与存储磁带(“描述文件”)相分离的“磁头”所定义。 | + | '''''【终译版】'''''正如 1949 年在伊利诺伊大学的演讲中所指出的,<ref name="TSRA" />冯·诺依曼的目标是设计一种机器,其复杂性可以自动增长(类似于自然选择下的生物有机体)。在被问到机器要跨越多高的复杂性阈值才能够进化并不断复杂时,<ref name="Rocha1998" /> 他的“理论证明”有着逻辑上的可能性。通过使用将通用可编程''“通用”构造模块''与''复制模块''分开的架构,他展示了机器的“描述文件”(磁带)如何在自我复制中积累突变,从而进化出更复杂的机器(下图说明这种可能性)。这一贡献之所以重要,是因为在此之前的人们可能会认为这种机器逻辑上根本无法存在:人们都曾认为能够进化和增长复杂性的生物(有机体)不可能是传统意义上的“机器”。而冯·诺依曼的见解则是将生命视为一台状态确定的图灵机,它受与存储磁带(“描述文件”)相分离的“磁头”所定义。 |
| | | |
| | | |
第116行: |
第116行: |
| 在实践中,当我们考虑冯 · 诺依曼所追求的特定自动机实现时,我们得出结论,它不会产生太多的进化动力学,因为机器太脆弱了——绝大多数的扰动会导致它们有效地解体。因此,他在伊利诺伊州的演讲中概述的概念模型是今天人们更感兴趣的,因为它展示了机器原则上是如何进化的。这个发现更加引人注目,因为这个模型是在上面讨论的 DNA 分子结构被发现之前。值得注意的是,Von Neumann 的设计认为向着更高复杂性的突变需要发生在(描述)子系统中,而这些子系统本身并不涉及自我复制,这是由额外的自动机 d 来概念化的,他认为这些自动机执行所有不直接涉及复制的功能(见上面的图和 Von Neumann 的具有进化能力的自我复制自动机系统)事实上,在生物有机体中,只观察到遗传密码的微小变异,这与冯 · 诺依曼的理论基础相符,即通用构造器(a)和复印器(b)本身不会进化,将所有进化(和复杂性的增长)留给自动机 d。在他未完成的著作中,冯 · 诺依曼还简要地考虑了他的自我繁殖机器之间的冲突和相互作用,以便从他的自我繁殖机器理论中理解生态和社会相互作用的进化。 | | 在实践中,当我们考虑冯 · 诺依曼所追求的特定自动机实现时,我们得出结论,它不会产生太多的进化动力学,因为机器太脆弱了——绝大多数的扰动会导致它们有效地解体。因此,他在伊利诺伊州的演讲中概述的概念模型是今天人们更感兴趣的,因为它展示了机器原则上是如何进化的。这个发现更加引人注目,因为这个模型是在上面讨论的 DNA 分子结构被发现之前。值得注意的是,Von Neumann 的设计认为向着更高复杂性的突变需要发生在(描述)子系统中,而这些子系统本身并不涉及自我复制,这是由额外的自动机 d 来概念化的,他认为这些自动机执行所有不直接涉及复制的功能(见上面的图和 Von Neumann 的具有进化能力的自我复制自动机系统)事实上,在生物有机体中,只观察到遗传密码的微小变异,这与冯 · 诺依曼的理论基础相符,即通用构造器(a)和复印器(b)本身不会进化,将所有进化(和复杂性的增长)留给自动机 d。在他未完成的著作中,冯 · 诺依曼还简要地考虑了他的自我繁殖机器之间的冲突和相互作用,以便从他的自我繁殖机器理论中理解生态和社会相互作用的进化。 |
| | | |
− | '''''【终译版】'''''在实践中,当考虑冯诺依曼所追求的特定自动机实例时,结论是它不会产生太多的进化动力学,因为机器太脆弱了——绝大多数扰动会导致它们的瓦解。因此,如今更令人感兴趣的是他在伊利诺伊州的讲座中概述的概念模型,因为它展示了机器在理论上是如何进化的。概念模型之所以更加引人注目,因为该模型先于上述讨论的 DNA 双分子结构的发现。还值得注意的是,冯诺依曼的设计认为,向更复杂的突变只发生在“描述文件”中,而非个体的其他部分,以此来实现所有的无论是否参与复制过程中的功能,正如自动机''D'' 的那样(见上图,具有进化能力的冯·诺依曼自复制自动机系统)。实际上,在生物有机体中也只能观察到遗传基因非常微小的变化,这与冯诺依曼的原理相吻合,即''通用构造器''(''A'')和''复制器''(''B'')不会自己发展,而是将所有的进化(和复杂性的增长)交给自动机''(D)''。在他未完成的作品中,冯诺依曼还简要考虑了他的自复制机之间的冲突和相互作用,以从他的自复制机理论中理解生态和社会的演变。 | + | '''''【终译版】'''''在实践中,当考虑冯诺依曼所追求的特定自动机实例时,结论是它不会产生太多的进化动力学,因为机器太脆弱了——绝大多数扰动会导致它们的瓦解。因此,如今更令人感兴趣的是他在伊利诺伊州的讲座中概述的概念模型,因为它展示了机器在理论上是如何进化的。概念模型之所以更加引人注目,因为该模型先于上述讨论的 DNA 双分子结构的发现。还值得注意的是,冯诺依曼的设计认为,向更复杂的突变只发生在“描述文件”中,而非个体的其他部分,以此来实现所有的无论是否参与复制过程中的功能,正如自动机''D'' 的那样(见上图,具有进化能力的冯·诺依曼自复制自动机系统)。实际上,在生物有机体中也只能观察到遗传基因非常微小的变化,这与冯诺依曼的原理相吻合,即''通用构造模块''(''A'')和通用''复制模块''(''B'')不会自己发展,而是将所有的进化(和复杂性的增长)交给自动机''(D)''。在他未完成的作品中,冯诺依曼还简要考虑了他的自复制机之间的冲突和相互作用,以从他的自复制机理论中理解生态和社会的演变。 |
| | | |
| [[Image:Pesavento replicator inherited mutations.png|thumb|center|700px|A demonstration of the ability of von Neumann's machine to support inheritable mutations. (1) At an earlier timestep, a mutation was manually added to the second generation machine's tape. (2) Later generations both display the [[phenotype]] of the mutation (a drawing of a flower) and pass the mutation on to their children, since the tape is copied each time. This example illustrates how von Neumann's design allows for complexity growth (in theory) since the tape could specify a machine that is more complex than the one making it. | | [[Image:Pesavento replicator inherited mutations.png|thumb|center|700px|A demonstration of the ability of von Neumann's machine to support inheritable mutations. (1) At an earlier timestep, a mutation was manually added to the second generation machine's tape. (2) Later generations both display the [[phenotype]] of the mutation (a drawing of a flower) and pass the mutation on to their children, since the tape is copied each time. This example illustrates how von Neumann's design allows for complexity growth (in theory) since the tape could specify a machine that is more complex than the one making it. |
| | | |
− | '''''【终译版】'''''冯诺依曼机器支持可遗传突变的演示。(1) 在较早的时间步,一个突变被手动添加到第二代机器的磁带中。(2) 后代都显示突变的表型(一朵花的图画)并将突变传给他们的孩子,因为每次都复制磁带。这个例子说明了冯诺依曼的设计如何允许复杂性增长(理论上),因为磁带可以描述一台比制造它的机器更复杂的机器。|链接=Special:FilePath/Pesavento_replicator_inherited_mutations.png]] | + | '''''【终译版】'''''冯诺依曼机器支持可遗传突变的演示。(1) 在较早的时间步,一个突变被手动添加到第二代机器的磁带中。(2) 后代都显示突变的表型(一朵花的图画)并将突变传给他们的孩子,因为每次都复制磁带(“描述文件”)。这个例子说明了冯诺依曼的设计如何允许复杂性增长(理论上),因为磁带可以描述一台比制造它的机器更复杂的机器。|链接=Special:FilePath/Pesavento_replicator_inherited_mutations.png]] |
| | | |
| == Implementations == | | == Implementations == |
第131行: |
第131行: |
| 在自动机理论中,由于伊甸园模式的存在,普遍构造函数的概念是非平凡的。但一个简单的定义是,通用构造函数能够构造任何非激发(静止)细胞的有限模式。 | | 在自动机理论中,由于伊甸园模式的存在,普遍构造函数的概念是非平凡的。但一个简单的定义是,通用构造函数能够构造任何非激发(静止)细胞的有限模式。 |
| | | |
− | '''''【终译版】'''''在自动机理论中,由于伊甸园模式的存在,''通用构造器'' 的概念非常重要。但一个简单的定义是,''通用构造器'' 能够构造任何有限模式的非激发(静止)细胞。 | + | '''''【终译版】'''''在自动机理论中,由于伊甸园模式的存在,''通用构造模块'' 的概念非常重要。但一个简单的定义是,''通用构造模块'' 能够构造任何有限模式的非激发(静止)细胞。 |
| | | |
| [[Arthur Burks]] and others extended the work of von Neumann, giving a much clearer and complete set of details regarding the design and operation of von Neumann's self-replicator. The work of J. W. Thatcher is particularly noteworthy, for he greatly simplified the design. Still, their work did not yield a complete design, cell by cell, of a configuration capable of demonstrating self-replication. | | [[Arthur Burks]] and others extended the work of von Neumann, giving a much clearer and complete set of details regarding the design and operation of von Neumann's self-replicator. The work of J. W. Thatcher is particularly noteworthy, for he greatly simplified the design. Still, their work did not yield a complete design, cell by cell, of a configuration capable of demonstrating self-replication. |
第139行: |
第139行: |
| 亚瑟 · 伯克斯和其他人扩展了冯 · 诺依曼的工作,给出了一套更加清晰和完整的关于冯 · 诺依曼自复制因子的设计和操作的细节。撒切尔的工作尤其值得注意,因为他极大地简化了设计。尽管如此,他们的工作并没有产生一个完整的设计,一个细胞一个细胞的配置能够显示自我复制。 | | 亚瑟 · 伯克斯和其他人扩展了冯 · 诺依曼的工作,给出了一套更加清晰和完整的关于冯 · 诺依曼自复制因子的设计和操作的细节。撒切尔的工作尤其值得注意,因为他极大地简化了设计。尽管如此,他们的工作并没有产生一个完整的设计,一个细胞一个细胞的配置能够显示自我复制。 |
| | | |
− | '''''【终译版】'''''亚瑟 · 伯克斯(Arthur Burks)和其他人扩展了冯诺依曼的工作,给出了更清晰和完整的自复制机设计和操作细节。撒切尔(JW Thatcher)的作品尤其值得一提,因为他大大简化了设计。尽管如此,他们的工作并没有产生能够逐个单元地展示自复制配置的完整设计。 | + | '''''【终译版】'''''亚瑟 · 伯克斯(Arthur Burks)和其他人扩展了冯诺依曼的工作,给出了更清晰和完整的自复制机设计和操作细节。撒切尔(JW Thatcher)的作品尤其值得一提,因为他大大简化了设计。尽管如此,他们的工作并没有产生能够逐个单元地展示自复制实例的完整设计。 |
| | | |
| [[Renato Nobili]] and Umberto Pesavento published the first fully implemented self-reproducing cellular automaton in 1995, nearly fifty years after von Neumann's work.<ref name=Pesavento1995/><ref name=NobiliPesavento1996>{{Citation|last1=Nobili|first1=Renato|last2=Pesavento|first2=Umberto|contribution=Generalised von Neumann's Automata|title=Proc. Artificial Worlds and Urban Studies, Conference 1|year=1996|editor-last=Besussi|editor-first=E.|editor2-last=Cecchini|editor2-first=A.|location=Venice|publisher=DAEST|url=http://www.pd.infn.it/%7Ernobili/pdf_files/jvnconstr.pdf}}</ref> They used a 32-state cellular automaton instead of von Neumann's original [[Von Neumann cellular automaton|29-state specification]], extending it to allow for easier signal-crossing, explicit memory function and a more compact design. They also published an implementation of a general constructor within the original 29-state CA but not one capable of complete replication - the configuration cannot duplicate its tape, nor can it trigger its offspring; the configuration can only construct.<ref name=NobiliPesavento1996/><ref name=Automata2008/> | | [[Renato Nobili]] and Umberto Pesavento published the first fully implemented self-reproducing cellular automaton in 1995, nearly fifty years after von Neumann's work.<ref name=Pesavento1995/><ref name=NobiliPesavento1996>{{Citation|last1=Nobili|first1=Renato|last2=Pesavento|first2=Umberto|contribution=Generalised von Neumann's Automata|title=Proc. Artificial Worlds and Urban Studies, Conference 1|year=1996|editor-last=Besussi|editor-first=E.|editor2-last=Cecchini|editor2-first=A.|location=Venice|publisher=DAEST|url=http://www.pd.infn.it/%7Ernobili/pdf_files/jvnconstr.pdf}}</ref> They used a 32-state cellular automaton instead of von Neumann's original [[Von Neumann cellular automaton|29-state specification]], extending it to allow for easier signal-crossing, explicit memory function and a more compact design. They also published an implementation of a general constructor within the original 29-state CA but not one capable of complete replication - the configuration cannot duplicate its tape, nor can it trigger its offspring; the configuration can only construct.<ref name=NobiliPesavento1996/><ref name=Automata2008/> |
第147行: |
第147行: |
| Renato Nobili 和 Umberto Pesavento 在1995年发表了第一个完全实现的自我复制细胞自动机,比 von Neumann 的工作晚了近50年。他们使用了32态细胞自动机,而不是冯诺依曼最初的29态规范,扩展了它,以便更容易的信号交叉,显式存储功能和更紧凑的设计。他们还发布了原始29状态 CA 中的一个通用构造函数的实现,但是没有一个能够完成复制——配置不能复制它的磁带,也不能触发它的后代; 配置只能构造。 | | Renato Nobili 和 Umberto Pesavento 在1995年发表了第一个完全实现的自我复制细胞自动机,比 von Neumann 的工作晚了近50年。他们使用了32态细胞自动机,而不是冯诺依曼最初的29态规范,扩展了它,以便更容易的信号交叉,显式存储功能和更紧凑的设计。他们还发布了原始29状态 CA 中的一个通用构造函数的实现,但是没有一个能够完成复制——配置不能复制它的磁带,也不能触发它的后代; 配置只能构造。 |
| | | |
− | '''''【终译版】'''''1995 年,Renato Nobili和 Umberto Pesavento 发表了第一个完全实现的自复制元胞自动机,距冯·诺依曼的提出已近 50 年。他们使用 32 态元胞自动机代替冯诺依曼最初的29态规则,通过对其进行了扩展,实现了更轻松的信号交叉、显式记忆功能和更紧凑的设计。他们还在最初的 29 态 CA 中发布了一个通用构造器的实现,但它不能完全复制——机器不能复制它的磁带,也不能激发它构建的后代,只能构建不包含“描述文件”的机器。<ref name="NobiliPesavento1996" /><ref name="Automata2008" /> | + | '''''【终译版】'''''1995 年,Renato Nobili和 Umberto Pesavento 发表了第一个完全实现的自复制元胞自动机,距冯·诺依曼的提出已近 50 年。他们使用 32 态元胞自动机代替冯诺依曼最初的29态规则,通过对其进行了扩展,实现了更轻松的信号交叉、显式记忆功能和更紧凑的设计。他们还在最初的 29 态 CA 中发布了一个通用构造模块的实现,但它不能完全复制——机器不能复制它的磁带,也不能激发它构建的后代,只能构建不包含“描述文件”的机器。<ref name="NobiliPesavento1996" /><ref name="Automata2008" /> |
| | | |
| In 2004, D. Mange et al. reported an implementation of a self-replicator that is consistent with the designs of von Neumann.<ref name=":1">{{Citation|journal=Proceedings of the IEEE| title=A Macroscopic View of Self-replication| volume=92| issue=12| first1=Daniel| last1=Mange|last2=Stauffer|first2=A.|last3=Peparaolo|first3=L.|last4=Tempesti|first4=G.| pages=1929–1945| year=2004|doi=10.1109/JPROC.2004.837631| s2cid=22500865}}</ref> | | In 2004, D. Mange et al. reported an implementation of a self-replicator that is consistent with the designs of von Neumann.<ref name=":1">{{Citation|journal=Proceedings of the IEEE| title=A Macroscopic View of Self-replication| volume=92| issue=12| first1=Daniel| last1=Mange|last2=Stauffer|first2=A.|last3=Peparaolo|first3=L.|last4=Tempesti|first4=G.| pages=1929–1945| year=2004|doi=10.1109/JPROC.2004.837631| s2cid=22500865}}</ref> |
第180行: |
第180行: |
| 2009年,Buckley 与 Golly 一起发表了 von Neumann 29州元胞自动机的第三种配置,它既可以执行整体自我复制,也可以通过部分构造执行自我复制。这种结构还表明,在冯 · 诺依曼29态细胞自动机中,信号交叉对于自复制因子的构造是不必要的。 | | 2009年,Buckley 与 Golly 一起发表了 von Neumann 29州元胞自动机的第三种配置,它既可以执行整体自我复制,也可以通过部分构造执行自我复制。这种结构还表明,在冯 · 诺依曼29态细胞自动机中,信号交叉对于自复制因子的构造是不必要的。 |
| | | |
− | '''''【终译版】'''''2009 年,Buckley 与Golly 一起发布了 von Neumann 29 态元胞自动机的第三种结构,它可以执行整体自我复制,也可以通过部分构造进行自我复制。这种结构还表明,在冯诺依曼 29 态元胞自动机中构建自我复制器不需要信号交互。 | + | '''''【终译版】'''''2009 年,Buckley 与Golly 一起发布了 von Neumann 29 态元胞自动机的第三种结构,它可以执行整体自我复制,也可以通过部分构造进行自我复制。这种结构还表明,在冯诺依曼 29 态元胞自动机中构建自复制机不需要信号交互。 |
| | | |
| C. L. Nehaniv in 2002, and also Y. Takada et al. in 2004, proposed a universal constructor directly implemented upon an asynchronous cellular automaton, rather than upon a synchronous cellular automaton. | | C. L. Nehaniv in 2002, and also Y. Takada et al. in 2004, proposed a universal constructor directly implemented upon an asynchronous cellular automaton, rather than upon a synchronous cellular automaton. |