更改

删除1字节 、 2022年1月21日 (五) 17:59
无编辑摘要
第160行: 第160行:  
巢寄生证明了宿主和寄生虫的密切共同进化,例如在一些杜鹃中。这些鸟不自己筑巢,而是在其他物种的巢中产卵,排出或杀死寄主的卵和幼鸟,从而对寄主的生殖适应性产生严重的负面影响。它们的卵伪装成它们寄主的卵,这意味着寄主能够区分自己的卵和入侵者的卵,并且处于一种进化的军备竞赛中,杜鹃介于伪装和识别之间。杜鹃与寄主相反,具有加厚的蛋壳、较短的孵化期(所以它们的幼鸟先孵化)以及适于将蛋提出巢外的平背等特征。<ref name="Weiblen">{{cite web |last1=Weiblen |first1=George D. |title=Interspecific Coevolution |url=http://geo.cbs.umn.edu/Weiblen2003.pdf |publisher=Macmillan |date=May 2003}}</ref><ref>{{cite journal |last1=Rothstein |first1=S.I |year=1990 |title=A model system for coevolution: avian brood parasitism |journal=Annual Review of Ecology and Systematics |volume=21 |pages=481–508 |doi=10.1146/annurev.ecolsys.21.1.481}}</ref><ref>{{Cite book|title=Cuckoo : cheating by nature|last=Davies, N. B. (Nicholas B.), 1952-|others=McCallum, James (Wildlife artist)|date=7 April 2015|isbn=978-1-62040-952-7|edition=First U.S.|location=New York, NY|oclc=881092849}}</ref>
 
巢寄生证明了宿主和寄生虫的密切共同进化,例如在一些杜鹃中。这些鸟不自己筑巢,而是在其他物种的巢中产卵,排出或杀死寄主的卵和幼鸟,从而对寄主的生殖适应性产生严重的负面影响。它们的卵伪装成它们寄主的卵,这意味着寄主能够区分自己的卵和入侵者的卵,并且处于一种进化的军备竞赛中,杜鹃介于伪装和识别之间。杜鹃与寄主相反,具有加厚的蛋壳、较短的孵化期(所以它们的幼鸟先孵化)以及适于将蛋提出巢外的平背等特征。<ref name="Weiblen">{{cite web |last1=Weiblen |first1=George D. |title=Interspecific Coevolution |url=http://geo.cbs.umn.edu/Weiblen2003.pdf |publisher=Macmillan |date=May 2003}}</ref><ref>{{cite journal |last1=Rothstein |first1=S.I |year=1990 |title=A model system for coevolution: avian brood parasitism |journal=Annual Review of Ecology and Systematics |volume=21 |pages=481–508 |doi=10.1146/annurev.ecolsys.21.1.481}}</ref><ref>{{Cite book|title=Cuckoo : cheating by nature|last=Davies, N. B. (Nicholas B.), 1952-|others=McCallum, James (Wildlife artist)|date=7 April 2015|isbn=978-1-62040-952-7|edition=First U.S.|location=New York, NY|oclc=881092849}}</ref>
   −
=== 对抗性共同进化 ===
+
=== 拮抗性的共同演化 ===
 
Antagonistic coevolution is seen in the [[harvester ant]] species ''[[Pogonomyrmex barbatus]]'' and ''[[Pogonomyrmex rugosus]]'', in a relationship both parasitic and mutualistic. The queens are unable to produce worker ants by mating with their own species. Only by crossbreeding can they produce workers. The winged females act as parasites for the males of the other species as their sperm will only produce sterile hybrids. But because the colonies are fully dependent on these hybrids to survive, it is also mutualistic. While there is no genetic exchange between the species, they are unable to evolve in a direction where they become too genetically different as this would make crossbreeding impossible.<ref name="Herrmann Cahan pp. 20141771–20141771">{{cite journal |last1=Herrmann |first1=M. |last2=Cahan |first2=S. H. |title=Inter-genomic sexual conflict drives antagonistic coevolution in harvester ants |journal=Proceedings of the Royal Society B: Biological Sciences |volume=281 |issue=1797 |date=29 October 2014 |doi=10.1098/rspb.2014.1771 |pmid=25355474 |pages=20141771 |pmc=4240986}}</ref>
 
Antagonistic coevolution is seen in the [[harvester ant]] species ''[[Pogonomyrmex barbatus]]'' and ''[[Pogonomyrmex rugosus]]'', in a relationship both parasitic and mutualistic. The queens are unable to produce worker ants by mating with their own species. Only by crossbreeding can they produce workers. The winged females act as parasites for the males of the other species as their sperm will only produce sterile hybrids. But because the colonies are fully dependent on these hybrids to survive, it is also mutualistic. While there is no genetic exchange between the species, they are unable to evolve in a direction where they become too genetically different as this would make crossbreeding impossible.<ref name="Herrmann Cahan pp. 20141771–20141771">{{cite journal |last1=Herrmann |first1=M. |last2=Cahan |first2=S. H. |title=Inter-genomic sexual conflict drives antagonistic coevolution in harvester ants |journal=Proceedings of the Royal Society B: Biological Sciences |volume=281 |issue=1797 |date=29 October 2014 |doi=10.1098/rspb.2014.1771 |pmid=25355474 |pages=20141771 |pmc=4240986}}</ref>
    
Antagonistic coevolution is seen in the harvester ant species Pogonomyrmex barbatus and Pogonomyrmex rugosus, in a relationship both parasitic and mutualistic. The queens are unable to produce worker ants by mating with their own species. Only by crossbreeding can they produce workers. The winged females act as parasites for the males of the other species as their sperm will only produce sterile hybrids. But because the colonies are fully dependent on these hybrids to survive, it is also mutualistic. While there is no genetic exchange between the species, they are unable to evolve in a direction where they become too genetically different as this would make crossbreeding impossible.
 
Antagonistic coevolution is seen in the harvester ant species Pogonomyrmex barbatus and Pogonomyrmex rugosus, in a relationship both parasitic and mutualistic. The queens are unable to produce worker ants by mating with their own species. Only by crossbreeding can they produce workers. The winged females act as parasites for the males of the other species as their sperm will only produce sterile hybrids. But because the colonies are fully dependent on these hybrids to survive, it is also mutualistic. While there is no genetic exchange between the species, they are unable to evolve in a direction where they become too genetically different as this would make crossbreeding impossible.
   −
拮抗性的共同进化在收获蚂蚁种类 Pogonomyrmex barbatus 和 Pogonomyrmex rugosus 中可以看到,它们之间既有寄生关系也有互惠关系。蚁后无法通过与同类交配来繁殖工蚁。只有通过杂交,他们才能生产工人。有翅膀的雌性像寄生虫一样为其他物种的雄性服务,因为它们的精子只会产生不育的杂种。但由于殖民地完全依赖这些杂交种生存,这也是互惠互利的。虽然两个物种之间没有基因交换,但它们无法朝着基因差异太大的方向进化,因为这将使杂交繁殖变得不可能。
+
拮抗性的共同演化在收获蚁种 ''Pogonomyrmex barbatus'' ''Pogonomyrmex rugosus'' 中可以看到,它们之间既有寄生关系也有互惠关系。蚁后无法通过与同类交配来繁殖工蚁。只有通过杂交,他们才能繁殖工蚁。有翅膀的雌性对其他物种的雄性像寄生一样,因为它们的精子只会繁殖不育的杂种。但由于殖民完全依赖于这些杂交种的生存,这也是互惠互利的。虽然两个物种之间没有基因交换,但它们不能朝着基因差异太大的方向进化,因为这将使杂交繁殖变得不可能。
    
==Predators and prey==
 
==Predators and prey==
68

个编辑