更改

添加1,688字节 、 2022年1月28日 (五) 14:43
无编辑摘要
第1行: 第1行:  
此词条暂由彩云小译翻译,翻译字数共2959,未经人工整理和审校,带来阅读不便,请见谅。
 
此词条暂由彩云小译翻译,翻译字数共2959,未经人工整理和审校,带来阅读不便,请见谅。
   −
[[File:GFS 850 MB.PNG|right|250px|thumb|A 96-hour forecast of 850 [[millibar|mbar]] [[geopotential height]] and [[temperature]] from the [[Global Forecast System]]]]
+
[[File:GFS 850 MB.PNG|right|250px|thumb|A 96-hour forecast of 850 [[millibar|mbar]] [[geopotential height]] and [[temperature]] from the [[Global Forecast System]]|链接=Special:FilePath/GFS_850_MB.PNG]]
    
An '''atmospheric model''' is a [[mathematical model]] constructed around the full set of [[primitive equations|primitive]] [[Dynamical systems theory|dynamical equations]] which govern atmospheric motions. It can supplement these equations with [[Parametrization (climate)|parameterizations]] for [[Turbulence|turbulent]] diffusion, [[radiation]], [[moist processes]] ([[clouds]] and [[precipitation (meteorology)|precipitation]]), [[heat transfer|heat exchange]], [[soil]], vegetation, surface water, the [[Kinematics|kinematic]] effects of [[terrain]], and convection. Most atmospheric models are numerical, i.e. they discretize equations of motion. They can predict microscale phenomena such as [[tornadoes]] and [[Eddy covariance|boundary layer eddies]], sub-microscale turbulent flow over buildings, as well as synoptic and global flows. The horizontal domain of a model is either ''global'', covering the entire [[Earth]], or ''regional'' (''limited-area''), covering only part of the Earth.  The different types of models run are thermotropic, [[barotropic]], hydrostatic, and nonhydrostatic.  Some of the model types make assumptions about the atmosphere which lengthens the time steps used and increases computational speed.
 
An '''atmospheric model''' is a [[mathematical model]] constructed around the full set of [[primitive equations|primitive]] [[Dynamical systems theory|dynamical equations]] which govern atmospheric motions. It can supplement these equations with [[Parametrization (climate)|parameterizations]] for [[Turbulence|turbulent]] diffusion, [[radiation]], [[moist processes]] ([[clouds]] and [[precipitation (meteorology)|precipitation]]), [[heat transfer|heat exchange]], [[soil]], vegetation, surface water, the [[Kinematics|kinematic]] effects of [[terrain]], and convection. Most atmospheric models are numerical, i.e. they discretize equations of motion. They can predict microscale phenomena such as [[tornadoes]] and [[Eddy covariance|boundary layer eddies]], sub-microscale turbulent flow over buildings, as well as synoptic and global flows. The horizontal domain of a model is either ''global'', covering the entire [[Earth]], or ''regional'' (''limited-area''), covering only part of the Earth.  The different types of models run are thermotropic, [[barotropic]], hydrostatic, and nonhydrostatic.  Some of the model types make assumptions about the atmosphere which lengthens the time steps used and increases computational speed.
第8行: 第8行:     
大气模式是围绕控制大气运动的一整套原始动力学方程建立的数学模式。它可以用湍流扩散、辐射、湿过程(云和降水)、热交换、土壤、植被、地表水、地形的运动学效应和对流等参数化来补充这些方程。大多数大气模型都是数字化的,例如。他们把运动方程分开。他们可以预测微尺度现象,例如龙卷风和边界层涡旋,建筑物上空的亚微尺度湍流,以及天气和全球气流。模型的水平域要么是全球性的,覆盖了整个地球; 要么是区域性的,只覆盖了地球的一部分。不同类型的模式运行是热力学,正压,流体静力学和非流体静力学。一些模型类型对大气层做出假设,从而延长了使用的时间步骤,提高了计算速度。
 
大气模式是围绕控制大气运动的一整套原始动力学方程建立的数学模式。它可以用湍流扩散、辐射、湿过程(云和降水)、热交换、土壤、植被、地表水、地形的运动学效应和对流等参数化来补充这些方程。大多数大气模型都是数字化的,例如。他们把运动方程分开。他们可以预测微尺度现象,例如龙卷风和边界层涡旋,建筑物上空的亚微尺度湍流,以及天气和全球气流。模型的水平域要么是全球性的,覆盖了整个地球; 要么是区域性的,只覆盖了地球的一部分。不同类型的模式运行是热力学,正压,流体静力学和非流体静力学。一些模型类型对大气层做出假设,从而延长了使用的时间步骤,提高了计算速度。
 +
 +
【终稿】大气模式是围绕控制大气运动的一整套原始的动力学方程所建立的数学模型。它可以通过湍流扩散、辐射额、湿过程(云和降水)、热交换、土壤、植被、地表水、地形的动力学效应和对流等的参数化来补充这些方程。大多数大气模式是基于数值方法的,即将运动方程离散化。它们可以预测微尺度的现象,例如龙卷风、边界层的涡旋、流经建筑物上方的亚微尺度湍流,以及天气气流、全球气流。模式的水平区域全球性的,覆盖整个地球,也可以是区域性的(有限区域的),只覆盖部分地球。模式运行的不同类型包括热致的、正压的、流体静力学的和非流体静力学的。部分类型的模式对大气进行了一些假设,从而加长了时间步长并提高计算速度。
    
Forecasts are computed using mathematical equations for the physics and dynamics of the atmosphere.  These equations are nonlinear and are impossible to solve exactly. Therefore, numerical methods obtain approximate solutions.  Different models use different solution methods.  Global models often use [[spectral method]]s for the horizontal dimensions and [[Finite difference method|finite-difference methods]] for the vertical dimension, while regional models usually use finite-difference methods in all three dimensions.  For specific locations, [[model output statistics]] use climate information, output from [[numerical weather prediction]], and current [[surface weather observation]]s to develop statistical relationships which account for model bias and resolution issues.
 
Forecasts are computed using mathematical equations for the physics and dynamics of the atmosphere.  These equations are nonlinear and are impossible to solve exactly. Therefore, numerical methods obtain approximate solutions.  Different models use different solution methods.  Global models often use [[spectral method]]s for the horizontal dimensions and [[Finite difference method|finite-difference methods]] for the vertical dimension, while regional models usually use finite-difference methods in all three dimensions.  For specific locations, [[model output statistics]] use climate information, output from [[numerical weather prediction]], and current [[surface weather observation]]s to develop statistical relationships which account for model bias and resolution issues.
第14行: 第16行:     
预报是利用大气物理和动力学的数学方程式计算出来的。这些方程是非线性的,不可能精确求解。因此,数值方法可以得到近似解。不同的模型使用不同的求解方法。全球模型通常采用谱方法计算水平维数,有限差分方法计算垂直维数,而区域模型通常采用三维有限差分方法。对于特定的位置,模型输出统计使用气候信息、数值天气预报气象观测数据和当前地面天气观测数据来建立统计关系,以解释模型偏差和分辨率问题。
 
预报是利用大气物理和动力学的数学方程式计算出来的。这些方程是非线性的,不可能精确求解。因此,数值方法可以得到近似解。不同的模型使用不同的求解方法。全球模型通常采用谱方法计算水平维数,有限差分方法计算垂直维数,而区域模型通常采用三维有限差分方法。对于特定的位置,模型输出统计使用气候信息、数值天气预报气象观测数据和当前地面天气观测数据来建立统计关系,以解释模型偏差和分辨率问题。
 +
 +
【终稿】预报是使用大气物理和动力学方程计算得来的。这些方程是非线性的,无法获得准确解。因此只能使用数值方法获得近似解。不同的模式使用不同的求解方法。全球模式通常在水平维度上采用谱方法,而在垂直维度采用有限差分法;而区域模式通常在三个维度均使用有限差分法。对于特定的位置,模式的输出统计使用气候信息、数值天气预测结果以及当前地表天气观测数据来建立统计关系,以解释模式偏差和分辨率问题。
    
== Types ==
 
== Types ==
第35行: 第39行:     
== History ==
 
== History ==
[[File:Two women operating ENIAC.gif|thumb|280px|The ENIAC main control panel at the [[Moore School of Electrical Engineering]]]]
+
[[File:Two women operating ENIAC.gif|thumb|280px|The ENIAC main control panel at the [[Moore School of Electrical Engineering]]|链接=Special:FilePath/Two_women_operating_ENIAC.gif]]
 
{{Main|History of numerical weather prediction}}
 
{{Main|History of numerical weather prediction}}
 
The [[history of numerical weather prediction]] began in the 1920s through the efforts of [[Lewis Fry Richardson]] who utilized procedures developed by [[Vilhelm Bjerknes]].<ref name="Lynch JCP">{{cite journal|last=Lynch|author-link=Peter Lynch (meteorologist)|first=Peter|title=The origins of computer weather prediction and climate modeling|journal=[[Journal of Computational Physics]]|date=2008-03-20|volume=227|issue=7|pages=3431–44|doi= 10.1016/j.jcp.2007.02.034 |url=http://www.rsmas.miami.edu/personal/miskandarani/Courses/MPO662/Lynch,Peter/OriginsCompWF.JCP227.pdf|access-date= 2010-12-23 |bibcode=2008JCoPh.227.3431L|archive-url=https://web.archive.org/web/20100708191309/http://www.rsmas.miami.edu/personal/miskandarani/Courses/MPO662/Lynch,Peter/OriginsCompWF.JCP227.pdf|archive-date=2010-07-08|url-status=dead}}</ref><ref name="Lynch Ch1">{{cite book|last=Lynch |first= Peter |title=The Emergence of Numerical Weather Prediction|year=2006|publisher=[[Cambridge University Press]]|isbn=978-0-521-85729-1|pages=1–27 |chapter= Weather Prediction by Numerical Process}}</ref>  It was not until the advent of the computer and [[computer simulation]] that computation time was reduced to less than the forecast period itself.  [[ENIAC]] created the first computer forecasts in 1950,<ref name="Charney 1950">{{cite journal|last1= Charney|first1=Jule|last2=Fjörtoft|first2=Ragnar|last3=von Neumann|first3=John|title=Numerical Integration of the Barotropic Vorticity Equation|journal= Tellus|date=November 1950|volume=2|issue=4|doi=10.3402/tellusa.v2i4.8607|author-link1=Jule Charney|author-link3=John von Neumann|bibcode= 1950TellA...2..237C |pages=237–254|doi-access=free}}</ref><ref>{{cite book|title=Storm Watchers|page=[https://archive.org/details/stormwatcherstur00cox_df1/page/208 208]|year=2002|author=Cox, John D.|publisher=John Wiley & Sons, Inc.|isbn=978-0-471-38108-2|url=https://archive.org/details/stormwatcherstur00cox_df1/page/208}}</ref> and more powerful computers later increased the size of initial datasets and included more complicated versions of the equations of motion.<ref name="Harper BAMS">{{cite journal|last=Harper|first=Kristine|author2=Uccellini, Louis W.|author3= Kalnay, Eugenia|author4= Carey, Kenneth|author5= Morone, Lauren|title=2007: 50th Anniversary of Operational Numerical Weather Prediction|journal=[[Bulletin of the American Meteorological Society]]|date=May 2007|volume=88|issue=5|pages=639–650|doi=10.1175/BAMS-88-5-639 |bibcode=2007BAMS...88..639H |doi-access=free}}</ref>  In 1966, [[West Germany]] and the United States began producing operational forecasts based on [[primitive equations|primitive-equation]] models, followed by the United Kingdom in 1972 and Australia in 1977.<ref name="Lynch JCP"/><ref name="Leslie BOM">{{cite journal|last=Leslie|first=L.M.|author2=Dietachmeyer, G.S.|title=Real-time limited area numerical weather prediction in Australia: a historical perspective|journal=Australian Meteorological Magazine|date=December 1992|volume=41|issue=SP|pages=61–77|url=http://www.bom.gov.au/amoj/docs/1992/leslie2.pdf|access-date=2011-01-03|publisher=[[Bureau of Meteorology]]}}</ref>  The development of global [[Forecasting#Categories of forecasting methods|forecasting models]] led to the first climate models.<ref name="Phillips"/><ref name="Cox210"/>  The development of limited area (regional) models facilitated advances in forecasting the tracks of [[tropical cyclone]] as well as [[air quality]] in the 1970s and 1980s.<ref name="Shuman W&F">{{cite journal|last=Shuman|first=Frederick G.|author-link=Frederick Gale Shuman|title=History of Numerical Weather Prediction at the National Meteorological Center|journal=[[Weather and Forecasting]]|date=September 1989|volume=4|issue=3|pages=286–296|doi= 10.1175/1520-0434(1989)004<0286:HONWPA>2.0.CO;2 |issn=1520-0434|bibcode=1989WtFor...4..286S|doi-access=free}}</ref><ref name="Steyn, D. G. 1991 241–242">{{cite book|title=Air pollution modeling and its application VIII, Volume 8|author=Steyn, D. G.|publisher=Birkhäuser|year=1991|pages=241–242|isbn= 978-0-306-43828-8}}</ref>
 
The [[history of numerical weather prediction]] began in the 1920s through the efforts of [[Lewis Fry Richardson]] who utilized procedures developed by [[Vilhelm Bjerknes]].<ref name="Lynch JCP">{{cite journal|last=Lynch|author-link=Peter Lynch (meteorologist)|first=Peter|title=The origins of computer weather prediction and climate modeling|journal=[[Journal of Computational Physics]]|date=2008-03-20|volume=227|issue=7|pages=3431–44|doi= 10.1016/j.jcp.2007.02.034 |url=http://www.rsmas.miami.edu/personal/miskandarani/Courses/MPO662/Lynch,Peter/OriginsCompWF.JCP227.pdf|access-date= 2010-12-23 |bibcode=2008JCoPh.227.3431L|archive-url=https://web.archive.org/web/20100708191309/http://www.rsmas.miami.edu/personal/miskandarani/Courses/MPO662/Lynch,Peter/OriginsCompWF.JCP227.pdf|archive-date=2010-07-08|url-status=dead}}</ref><ref name="Lynch Ch1">{{cite book|last=Lynch |first= Peter |title=The Emergence of Numerical Weather Prediction|year=2006|publisher=[[Cambridge University Press]]|isbn=978-0-521-85729-1|pages=1–27 |chapter= Weather Prediction by Numerical Process}}</ref>  It was not until the advent of the computer and [[computer simulation]] that computation time was reduced to less than the forecast period itself.  [[ENIAC]] created the first computer forecasts in 1950,<ref name="Charney 1950">{{cite journal|last1= Charney|first1=Jule|last2=Fjörtoft|first2=Ragnar|last3=von Neumann|first3=John|title=Numerical Integration of the Barotropic Vorticity Equation|journal= Tellus|date=November 1950|volume=2|issue=4|doi=10.3402/tellusa.v2i4.8607|author-link1=Jule Charney|author-link3=John von Neumann|bibcode= 1950TellA...2..237C |pages=237–254|doi-access=free}}</ref><ref>{{cite book|title=Storm Watchers|page=[https://archive.org/details/stormwatcherstur00cox_df1/page/208 208]|year=2002|author=Cox, John D.|publisher=John Wiley & Sons, Inc.|isbn=978-0-471-38108-2|url=https://archive.org/details/stormwatcherstur00cox_df1/page/208}}</ref> and more powerful computers later increased the size of initial datasets and included more complicated versions of the equations of motion.<ref name="Harper BAMS">{{cite journal|last=Harper|first=Kristine|author2=Uccellini, Louis W.|author3= Kalnay, Eugenia|author4= Carey, Kenneth|author5= Morone, Lauren|title=2007: 50th Anniversary of Operational Numerical Weather Prediction|journal=[[Bulletin of the American Meteorological Society]]|date=May 2007|volume=88|issue=5|pages=639–650|doi=10.1175/BAMS-88-5-639 |bibcode=2007BAMS...88..639H |doi-access=free}}</ref>  In 1966, [[West Germany]] and the United States began producing operational forecasts based on [[primitive equations|primitive-equation]] models, followed by the United Kingdom in 1972 and Australia in 1977.<ref name="Lynch JCP"/><ref name="Leslie BOM">{{cite journal|last=Leslie|first=L.M.|author2=Dietachmeyer, G.S.|title=Real-time limited area numerical weather prediction in Australia: a historical perspective|journal=Australian Meteorological Magazine|date=December 1992|volume=41|issue=SP|pages=61–77|url=http://www.bom.gov.au/amoj/docs/1992/leslie2.pdf|access-date=2011-01-03|publisher=[[Bureau of Meteorology]]}}</ref>  The development of global [[Forecasting#Categories of forecasting methods|forecasting models]] led to the first climate models.<ref name="Phillips"/><ref name="Cox210"/>  The development of limited area (regional) models facilitated advances in forecasting the tracks of [[tropical cyclone]] as well as [[air quality]] in the 1970s and 1980s.<ref name="Shuman W&F">{{cite journal|last=Shuman|first=Frederick G.|author-link=Frederick Gale Shuman|title=History of Numerical Weather Prediction at the National Meteorological Center|journal=[[Weather and Forecasting]]|date=September 1989|volume=4|issue=3|pages=286–296|doi= 10.1175/1520-0434(1989)004<0286:HONWPA>2.0.CO;2 |issn=1520-0434|bibcode=1989WtFor...4..286S|doi-access=free}}</ref><ref name="Steyn, D. G. 1991 241–242">{{cite book|title=Air pollution modeling and its application VIII, Volume 8|author=Steyn, D. G.|publisher=Birkhäuser|year=1991|pages=241–242|isbn= 978-0-306-43828-8}}</ref>
第56行: 第60行:     
==Computation==
 
==Computation==
[[File:NAM 500 MB.PNG|thumb|An example of 500 [[millibar|mbar]] [[geopotential height]] prediction from a numerical weather prediction model.]]
+
[[File:NAM 500 MB.PNG|thumb|An example of 500 [[millibar|mbar]] [[geopotential height]] prediction from a numerical weather prediction model.|链接=Special:FilePath/NAM_500_MB.PNG]]
[[File:Supercomputing the Climate.ogv|thumb|Supercomputers are capable of running highly complex models to help scientists better understand Earth's climate.]]
+
[[File:Supercomputing the Climate.ogv|thumb|Supercomputers are capable of running highly complex models to help scientists better understand Earth's climate.|链接=Special:FilePath/Supercomputing_the_Climate.ogv]]
      第230行: 第234行:     
===Limited area modeling===
 
===Limited area modeling===
[[File:Ernesto2006modelspread.png|thumb|right|Model spread with [[Hurricane Ernesto (2006)]] within the National Hurricane Center limited area models]]
+
[[File:Ernesto2006modelspread.png|thumb|right|Model spread with [[Hurricane Ernesto (2006)]] within the National Hurricane Center limited area models|链接=Special:FilePath/Ernesto2006modelspread.png]]
    
[[Air pollution forecasting|Air pollution forecasts]] depend on atmospheric models to provide [[fluid flow]] information for tracking the movement of pollutants.<ref>{{cite journal | author1=Alexander Baklanov | author2=Alix Rasmussen | author3=Barbara Fay | author4=Erik Berge | author5=Sandro Finardi | title=Potential and Shortcomings of Numerical Weather Prediction Models in Providing Meteorological Data for Urban Air Pollution Forecasting | journal=Water, Air, & Soil Pollution: Focus | date=September 2002 | volume=2 | issue=5 | pages=43–60 | doi=10.1023/A:1021394126149| s2cid=94747027 }}</ref> In 1970, a private company in the U.S. developed the regional Urban Airshed Model (UAM), which was used to forecast the effects of air pollution and [[acid rain]]. In the mid- to late-1970s, the [[United States Environmental Protection Agency]] took over the development of the UAM and then used the results from a regional air pollution study to improve it. Although the UAM was developed for [[California]], it was during the 1980s used elsewhere in North America, Europe, and Asia.<ref name="Steyn, D. G. 1991 241–242"/>
 
[[Air pollution forecasting|Air pollution forecasts]] depend on atmospheric models to provide [[fluid flow]] information for tracking the movement of pollutants.<ref>{{cite journal | author1=Alexander Baklanov | author2=Alix Rasmussen | author3=Barbara Fay | author4=Erik Berge | author5=Sandro Finardi | title=Potential and Shortcomings of Numerical Weather Prediction Models in Providing Meteorological Data for Urban Air Pollution Forecasting | journal=Water, Air, & Soil Pollution: Focus | date=September 2002 | volume=2 | issue=5 | pages=43–60 | doi=10.1023/A:1021394126149| s2cid=94747027 }}</ref> In 1970, a private company in the U.S. developed the regional Urban Airshed Model (UAM), which was used to forecast the effects of air pollution and [[acid rain]]. In the mid- to late-1970s, the [[United States Environmental Protection Agency]] took over the development of the UAM and then used the results from a regional air pollution study to improve it. Although the UAM was developed for [[California]], it was during the 1980s used elsewhere in North America, Europe, and Asia.<ref name="Steyn, D. G. 1991 241–242"/>
6

个编辑