更改

添加1,902字节 、 2022年1月31日 (一) 10:30
无编辑摘要
第42行: 第42行:  
流体静力学模型从垂直动量方程中过滤出垂直移动声波的方程,显著地增加了模型运行中使用的时间步长。这就是流体静力学近似。流体静力学模型使用压力或 sigma 压力的垂直坐标。压力坐标与地形相交,而 sigma 坐标跟随地形等高线。只要水平网格分辨率不小,其静力学假设是合理的,这是静力学假设失效的尺度。使用整个垂直动量方程的模型称为非静力学模型。非流体静力学模型可以用分弹性方法求解,这意味着它可以求解空气的完全连续性方程,前提是它是不可压缩的,或者是弹性的,这意味着它可以求解空气的完全连续性方程,并且是完全可压缩的。非静力学模型使用高度或西格玛高度作为其垂直坐标。高度坐标可以与地面相交,而 sigma 高度坐标则跟随地面的等高线。
 
流体静力学模型从垂直动量方程中过滤出垂直移动声波的方程,显著地增加了模型运行中使用的时间步长。这就是流体静力学近似。流体静力学模型使用压力或 sigma 压力的垂直坐标。压力坐标与地形相交,而 sigma 坐标跟随地形等高线。只要水平网格分辨率不小,其静力学假设是合理的,这是静力学假设失效的尺度。使用整个垂直动量方程的模型称为非静力学模型。非流体静力学模型可以用分弹性方法求解,这意味着它可以求解空气的完全连续性方程,前提是它是不可压缩的,或者是弹性的,这意味着它可以求解空气的完全连续性方程,并且是完全可压缩的。非静力学模型使用高度或西格玛高度作为其垂直坐标。高度坐标可以与地面相交,而 sigma 高度坐标则跟随地面的等高线。
   −
【终稿】流体静力学模式从垂直动量方恒中过滤出垂直运动的声波,这显著地增加了模型运行中使用的时间步长,这就是流体静力学近似。流体静力学模式使用压力或sigma 压力作为垂直坐标。压力坐标与地形相交,而sigma 坐标随地形等高线变化。只要水平网格分辨率不小,该模式的流体静力学假设便是合理的。使用整个垂直动量方程的模式称为非流体静力学模式,它既可以滞弹性求解,这意味着它求解了不可压缩空气的完整的连续性方程;也可以弹性求解,这意味着它求解了完全可压缩空气的完整的连续性方程。非静力学假设使用海拔高度或sigma 高度作为其垂直坐标。海拔高度可以和地形相交,而sigma 高度坐标随地板等高线改变。
+
【终稿】流体静力学模式从垂直动量方恒中过滤出垂直运动的声波,这显著地增加了模型运行中使用的时间步长,这就是流体静力学近似。流体静力学模式使用压力或sigma 压力作为垂直坐标。压力坐标与地形相交,而sigma 坐标随地形等高线变化。只要水平网格分辨率不小,该模式的流体静力学假设便是合理的。使用整个垂直动量方程的模式称为非流体静力学模式,它既可以滞弹性求解,这意味着它求解了不可压缩空气的完整的连续性方程;也可以弹性求解,这意味着它求解了完全可压缩空气的完整的连续性方程。非静力学假设使用海拔高度或sigma 高度作为其垂直坐标。海拔高度可以和地形相交,而sigma 高度坐标随地面等高线改变。
    
== History 历史 ==
 
== History 历史 ==
第61行: 第61行:  
由于基于大气动力学的预报模式的输出需要近地面水平的修正,因此在20世纪70年代和80年代发展了单个预报点(位置)的模式输出统计学(MOS)。即使超级计算机的能力越来越强,数值天气模式的预报技巧也只能延伸到未来两周左右,因为观测的密度和质量ーー以及用于计算预报的偏微分方程的混沌性ーー带来了每五天翻一番的误差。Weickmann,Klaus,Jeff Whitaker,Andres Roubicek 和 Catherine Smith (2001-12-01)。利用集合天气预报制作经改进的中期(3-15天)天气预报。气候诊断中心。检索2007-02-16。自20世纪90年代以来,模式集合预报的使用有助于确定预报的不确定性,并且比其他方式可能延长未来一个天气预报。
 
由于基于大气动力学的预报模式的输出需要近地面水平的修正,因此在20世纪70年代和80年代发展了单个预报点(位置)的模式输出统计学(MOS)。即使超级计算机的能力越来越强,数值天气模式的预报技巧也只能延伸到未来两周左右,因为观测的密度和质量ーー以及用于计算预报的偏微分方程的混沌性ーー带来了每五天翻一番的误差。Weickmann,Klaus,Jeff Whitaker,Andres Roubicek 和 Catherine Smith (2001-12-01)。利用集合天气预报制作经改进的中期(3-15天)天气预报。气候诊断中心。检索2007-02-16。自20世纪90年代以来,模式集合预报的使用有助于确定预报的不确定性,并且比其他方式可能延长未来一个天气预报。
   −
【终稿】由于基于大气动力学的预报模型的输出结果需要近地面处的修正,因此20世纪70年代和20世纪80年代开发了单个预报点(称为“location”)的模型输出统计(MOS)。尽管超级计算机的能力不断提升,数值天气模式的预报仅能延伸到未来两周左右,这是因为观测点的密度和质量以及被用来预测的偏微分方程的混沌本质都会引入每五天加倍的误差。自20世纪90年代以来,模式集合预报的使用帮助确定了不确定性,并且预测时段比其他可能的方式都要长。
+
【终稿】由于基于大气动力学的预报模型的输出结果需要近地面处的修正,因此20世纪70年代和20世纪80年代开发了单个预报位点的模型输出统计(MOS)。尽管超级计算机的能力不断提升,数值天气模式的预报仅能延伸到未来两周左右,这是因为观测点的密度和质量以及被用来预测的偏微分方程的混沌本质都会引入每五天加倍的误差。自20世纪90年代以来,模式集合预报的使用帮助确定了不确定性,并且预测时段比其他可能的方式都要长。
    
==Initialization 初始化==
 
==Initialization 初始化==
第76行: 第76行:  
超级计算机能够运行高度复杂的模型,以帮助科学家更好地了解地球的气候。
 
超级计算机能够运行高度复杂的模型,以帮助科学家更好地了解地球的气候。
   −
A model is a computer program that produces [[meteorological]] information for future times at given locations and altitudes.  Within any model is a set of equations, known as the [[primitive equations]], used to predict the future state of the atmosphere.<ref>{{cite book|last=Pielke|first=Roger A.|title=Mesoscale Meteorological Modeling|year=2002|publisher=[[Academic Press]]|isbn=978-0-12-554766-6|pages=48–49}}</ref>  These equations are initialized from the analysis data and rates of change are determined.  These rates of change predict the state of the atmosphere a short time into the future, with each time increment known as a time step.  The equations are then applied to this new atmospheric state to find new rates of change, and these new rates of change predict the atmosphere at a yet further time into the future.  ''Time stepping'' is repeated until the solution reaches the desired forecast time.  The length of the time step chosen within the model is related to the distance between the points on the computational grid, and is chosen to maintain [[numerical stability]].<ref>{{cite book|last=Pielke|first=Roger A.|title=Mesoscale Meteorological Modeling|year=2002|publisher=[[Academic Press]]|isbn=978-0-12-554766-6|pages=285–287}}</ref>  Time steps for global models are on the order of tens of minutes,<ref>{{cite book|url=https://books.google.com/books?id=JZikIbXzipwC&pg=PA131|page=132|title=Computational Science – ICCS 2005: 5th International Conference, Atlanta, GA, USA, May 22–25, 2005, Proceedings, Part 1|author=Sunderam, V. S. |author2=G. Dick van Albada |author3=Peter M. A. Sloot |author4=J. J. Dongarra|year=2005|publisher=Springer|isbn=978-3-540-26032-5}}</ref> while time steps for regional models are between one and four minutes.<ref>{{cite book|url=https://books.google.com/books?id=UV6PnF2z5_wC&pg=PA276|page=276|title=Developments in teracomputing: proceedings of the ninth ECMWF Workshop on the Use of High Performance Computing in Meteorology|author=Zwieflhofer, Walter |author2=Norbert Kreitz |author3=European Centre for Medium Range Weather Forecasts|year=2001|publisher=World Scientific|isbn=978-981-02-4761-4}}</ref>  The global models are run at varying times into the future.  The [[UKMET]] [[Unified model]] is run six days into the future,<ref name="models"/> the [[European Centre for Medium-Range Weather Forecasts]] model is run out to 10&nbsp;days into the future,<ref>{{cite book|url=https://books.google.com/books?id=fhW5oDv3EPsC&pg=PA474|page=480|author=Holton, James R.|title=An introduction to dynamic meteorology, Volume 1|year=2004|publisher=Academic Press|isbn=978-0-12-354015-7}}</ref> while the [[Global Forecast System]] model run by the [[Environmental Modeling Center]] is run 16&nbsp;days into the future.<ref>{{cite book|url=https://books.google.com/books?id=mTZvR3R6YdkC&pg=PA121|page=121|title=Famine early warning systems and remote sensing data|author=Brown, Molly E.|publisher=Springer|year=2008|isbn=978-3-540-75367-4}}</ref>
+
【终稿】超级计算机能够运行高度复杂的模型,从而帮助科学家更好地理解地球的气候。
 +
 
 +
A model is a computer program that produces [[meteorological]] information for future times at given locations and altitudes.  Within any model is a set of equations, known as the [[primitive equations]], used to predict the future state of the atmosphere.<ref>{{cite book|last=Pielke|first=Roger A.|title=Mesoscale Meteorological Modeling|year=2002|publisher=[[Academic Press]]|isbn=978-0-12-554766-6|pages=48–49}}</ref>  These equations are initialized from the analysis data and rates of change are determined.  These rates of change predict the state of the atmosphere a short time into the future, with each time increment known as a time step.  The equations are then applied to this new atmospheric state to find new rates of change, and these new rates of change predict the atmosphere at a yet further time into the future.  ''Time stepping'' is repeated until the solution reaches the desired forecast time.  The length of the time step chosen within the model is related to the distance between the points on the computational grid, and is chosen to maintain [[numerical stability]].<ref>{{cite book|last=Pielke|first=Roger A.|title=Mesoscale Meteorological Modeling|year=2002|publisher=[[Academic Press]]|isbn=978-0-12-554766-6|pages=285–287}}</ref>  Time steps for global models are on the order of tens of minutes,<ref>{{cite book|url=https://books.google.com/books?id=JZikIbXzipwC&pg=PA131|page=132|title=Computational Science – ICCS 2005: 5th International Conference, Atlanta, GA, USA, May 22–25, 2005, Proceedings, Part 1|author=Sunderam, V. S. |author2=G. Dick van Albada |author3=Peter M. A. Sloot |author4=J. J. Dongarra|year=2005|publisher=Springer|isbn=978-3-540-26032-5}}</ref> while time steps for regional models are between one and four minutes.<ref>{{cite book|url=https://books.google.com/books?id=UV6PnF2z5_wC&pg=PA276|page=276|title=Developments in teracomputing: proceedings of the ninth ECMWF Workshop on the Use of High Performance Computing in Meteorology|author=Zwieflhofer, Walter |author2=Norbert Kreitz |author3=European Centre for Medium Range Weather Forecasts|year=2001|publisher=World Scientific|isbn=978-981-02-4761-4}}</ref>  The global models are run at varying times into the future.  The [[UKMET]] [[Unified model]] is run six days into the future,<ref name="models" /> the [[European Centre for Medium-Range Weather Forecasts]] model is run out to 10&nbsp;days into the future,<ref>{{cite book|url=https://books.google.com/books?id=fhW5oDv3EPsC&pg=PA474|page=480|author=Holton, James R.|title=An introduction to dynamic meteorology, Volume 1|year=2004|publisher=Academic Press|isbn=978-0-12-354015-7}}</ref> while the [[Global Forecast System]] model run by the [[Environmental Modeling Center]] is run 16&nbsp;days into the future.<ref>{{cite book|url=https://books.google.com/books?id=mTZvR3R6YdkC&pg=PA121|page=121|title=Famine early warning systems and remote sensing data|author=Brown, Molly E.|publisher=Springer|year=2008|isbn=978-3-540-75367-4}}</ref>
    
A model is a computer program that produces meteorological information for future times at given locations and altitudes.  Within any model is a set of equations, known as the primitive equations, used to predict the future state of the atmosphere.  These equations are initialized from the analysis data and rates of change are determined.  These rates of change predict the state of the atmosphere a short time into the future, with each time increment known as a time step.  The equations are then applied to this new atmospheric state to find new rates of change, and these new rates of change predict the atmosphere at a yet further time into the future.  Time stepping is repeated until the solution reaches the desired forecast time.  The length of the time step chosen within the model is related to the distance between the points on the computational grid, and is chosen to maintain numerical stability.  Time steps for global models are on the order of tens of minutes, while time steps for regional models are between one and four minutes.  The global models are run at varying times into the future.  The UKMET Unified model is run six days into the future, the European Centre for Medium-Range Weather Forecasts model is run out to 10 days into the future, while the Global Forecast System model run by the Environmental Modeling Center is run 16 days into the future.
 
A model is a computer program that produces meteorological information for future times at given locations and altitudes.  Within any model is a set of equations, known as the primitive equations, used to predict the future state of the atmosphere.  These equations are initialized from the analysis data and rates of change are determined.  These rates of change predict the state of the atmosphere a short time into the future, with each time increment known as a time step.  The equations are then applied to this new atmospheric state to find new rates of change, and these new rates of change predict the atmosphere at a yet further time into the future.  Time stepping is repeated until the solution reaches the desired forecast time.  The length of the time step chosen within the model is related to the distance between the points on the computational grid, and is chosen to maintain numerical stability.  Time steps for global models are on the order of tens of minutes, while time steps for regional models are between one and four minutes.  The global models are run at varying times into the future.  The UKMET Unified model is run six days into the future, the European Centre for Medium-Range Weather Forecasts model is run out to 10 days into the future, while the Global Forecast System model run by the Environmental Modeling Center is run 16 days into the future.
第82行: 第84行:  
模型是一种计算机程序,可以在给定的地点和高度为未来时间生成气象信息。在任何模型中都有一组方程,被称为原始方程组方程,用来预测未来的大气状态。这些方程由分析数据初始化,并确定变化率。这些变化率可以预测未来一小段时间内大气层的状态,每一个时间增量称为时间步长。然后将这些方程式应用到这种新的大气状态,以发现新的变化速率,而这些新的变化速率预测了未来更远时间的大气层。重复时间步进,直到解到达预期的预测时间。在模型中选择的时间步长与计算网格中点之间的距离有关,选择这个时间步长是为了保持数值稳定性。全球模型的时间步长约为数十分钟,而区域模型的时间步长约为1至4分钟。全球模型在未来的不同时间运行。统一模型在未来6天内运行,欧洲中期天气预报中心模型在未来10天内运行,而由环境建模中心运行的全球预报系统模型在未来16天内运行。
 
模型是一种计算机程序,可以在给定的地点和高度为未来时间生成气象信息。在任何模型中都有一组方程,被称为原始方程组方程,用来预测未来的大气状态。这些方程由分析数据初始化,并确定变化率。这些变化率可以预测未来一小段时间内大气层的状态,每一个时间增量称为时间步长。然后将这些方程式应用到这种新的大气状态,以发现新的变化速率,而这些新的变化速率预测了未来更远时间的大气层。重复时间步进,直到解到达预期的预测时间。在模型中选择的时间步长与计算网格中点之间的距离有关,选择这个时间步长是为了保持数值稳定性。全球模型的时间步长约为数十分钟,而区域模型的时间步长约为1至4分钟。全球模型在未来的不同时间运行。统一模型在未来6天内运行,欧洲中期天气预报中心模型在未来10天内运行,而由环境建模中心运行的全球预报系统模型在未来16天内运行。
   −
The equations used are [[nonlinear system|nonlinear]] partial differential equations which are impossible to solve exactly through analytical methods,<ref name="finite">{{cite book|url=https://books.google.com/books?id=SH8R_flZBGIC&pg=PA165|title=Finite difference schemes and partial differential equations|author=Strikwerda, John C.|pages=165–170|year=2004|publisher=SIAM|isbn=978-0-89871-567-5}}</ref> with the exception of a few idealized cases.<ref>{{cite book|last=Pielke|first=Roger A.|title=Mesoscale Meteorological Modeling|year=2002|publisher=[[Academic Press]]|isbn=978-0-12-554766-6|pages=65}}</ref> Therefore, numerical methods obtain approximate solutions.  Different models use different solution methods: some global models use [[spectral method]]s for the horizontal dimensions and [[finite difference method]]s for the vertical dimension, while regional models and other global models usually use finite-difference methods in all three dimensions.<ref name="finite"/>  The visual output produced by a model solution is known as a [[prognostic chart]], or ''prog''.<ref>{{cite book|author=Ahrens, C. Donald|page=244|isbn=978-0-495-11558-8|year=2008|publisher=Cengage Learning|title=Essentials of meteorology: an invitation to the atmosphere|url=https://books.google.com/books?id=2Yn29IFukbgC&pg=PA244}}</ref>
+
【终稿】模式指的是一种可以在给定的位置和海拔高度生成未来气象信息的一种计算机程序。任何模型中都有一套称为“原始方程组”的方程组,用于预测未来的大气状态。这些方程组依据分析数据初始化,并确定变化速率。这些变化速率可以预测未来一小段时间的大气状态,每一个时间增量被称为一个时间步长。然后这些方程组被用于新的大气状态,得到新的变化速率,新的变化速率接着被用于预测再往后的大气状态。不断推进时间步,直到方程组的解到达了想要的预测时间。模式内时间步长的选择与计算网格间距有关,需要确保数值稳定性。全球模式的时间步长约为数十分钟,而区域模式则为1到4分钟。全球模式预测时段各有不同。UKMET联合模式可预测未来6天,欧洲中心的中期天气预测模型(European Centre for Medium-Range Weather Forecasts model)可预测未来10天,而环境建模中心(Environmental Modeling Center)的全球预测系统模式(Global Forest System model)可以预测未来16天。
 +
 
 +
The equations used are [[nonlinear system|nonlinear]] partial differential equations which are impossible to solve exactly through analytical methods,<ref name="finite">{{cite book|url=https://books.google.com/books?id=SH8R_flZBGIC&pg=PA165|title=Finite difference schemes and partial differential equations|author=Strikwerda, John C.|pages=165–170|year=2004|publisher=SIAM|isbn=978-0-89871-567-5}}</ref> with the exception of a few idealized cases.<ref>{{cite book|last=Pielke|first=Roger A.|title=Mesoscale Meteorological Modeling|year=2002|publisher=[[Academic Press]]|isbn=978-0-12-554766-6|pages=65}}</ref> Therefore, numerical methods obtain approximate solutions.  Different models use different solution methods: some global models use [[spectral method]]s for the horizontal dimensions and [[finite difference method]]s for the vertical dimension, while regional models and other global models usually use finite-difference methods in all three dimensions.<ref name="finite" />  The visual output produced by a model solution is known as a [[prognostic chart]], or ''prog''.<ref>{{cite book|author=Ahrens, C. Donald|page=244|isbn=978-0-495-11558-8|year=2008|publisher=Cengage Learning|title=Essentials of meteorology: an invitation to the atmosphere|url=https://books.google.com/books?id=2Yn29IFukbgC&pg=PA244}}</ref>
    
The equations used are nonlinear partial differential equations which are impossible to solve exactly through analytical methods, with the exception of a few idealized cases. Therefore, numerical methods obtain approximate solutions.  Different models use different solution methods: some global models use spectral methods for the horizontal dimensions and finite difference methods for the vertical dimension, while regional models and other global models usually use finite-difference methods in all three dimensions.  The visual output produced by a model solution is known as a prognostic chart, or prog.
 
The equations used are nonlinear partial differential equations which are impossible to solve exactly through analytical methods, with the exception of a few idealized cases. Therefore, numerical methods obtain approximate solutions.  Different models use different solution methods: some global models use spectral methods for the horizontal dimensions and finite difference methods for the vertical dimension, while regional models and other global models usually use finite-difference methods in all three dimensions.  The visual output produced by a model solution is known as a prognostic chart, or prog.
    
所用的方程是非线性偏微分方程,除了少数理想化的情况外,不可能用解析方法精确求解。因此,数值方法可以得到近似解。不同的模型使用不同的求解方法: 一些全球模型使用谱方法求解水平维度,而差分方法求解垂直维度,而区域模型和其他全球模型通常使用三维有限差分方法。模型解决方案产生的可视化输出被称为预测图,或 prog。
 
所用的方程是非线性偏微分方程,除了少数理想化的情况外,不可能用解析方法精确求解。因此,数值方法可以得到近似解。不同的模型使用不同的求解方法: 一些全球模型使用谱方法求解水平维度,而差分方法求解垂直维度,而区域模型和其他全球模型通常使用三维有限差分方法。模型解决方案产生的可视化输出被称为预测图,或 prog。
 +
 +
【终稿】  由于使用的方程组是非线性的偏微分方程组,除了少数理想情况外无法用解析方法得到准确解,因此使用数值方法来获得近似解。不同的模式使用不同的求解方法:一些全球模式在水平维度使用谱方法求解,在垂直维度使用有限差分方法求解;而另一些全球模式以及区域模式则在三个维度都使用有限差分方法求解。模式的结果可视化通常称为预测图,或简称为“prog”。
    
== Parameterization 参数化 ==
 
== Parameterization 参数化 ==
第96行: 第102行:     
= = = 天气和气候模型网格参量化的边界在到之间。一个典型的积云的尺度小于,并且需要一个比这更精细的网格才能用流体运动方程来表示。因此,这些云所代表的过程是通过各种复杂的过程来参数化的。在最早的模型中,如果模型网格盒中的空气柱是不稳定的(即,底部比顶部暖) ,那么它将被推翻,并且垂直柱中的空气将混合。更复杂的方案增加了增强功能,认识到只有盒子的一部分可能会突起,并且夹带和其他过程会发生。具有边界在到之间的网格框的天气模型可以明确地表示对流云,尽管它们仍然需要将云的微物理参数化。大尺度云(层云类型)的形成更多的是基于物理上的,它们是在相对湿度达到某个规定值时形成的。不过,次级电网规模的过程仍然需要考虑。与其假设云的形成相对湿度是100% ,不如假设层云型云的形成临界相对湿度是70% ,而积云型云的形成率是80% 或以上,这反映了现实世界中亚网格尺度的变化。
 
= = = 天气和气候模型网格参量化的边界在到之间。一个典型的积云的尺度小于,并且需要一个比这更精细的网格才能用流体运动方程来表示。因此,这些云所代表的过程是通过各种复杂的过程来参数化的。在最早的模型中,如果模型网格盒中的空气柱是不稳定的(即,底部比顶部暖) ,那么它将被推翻,并且垂直柱中的空气将混合。更复杂的方案增加了增强功能,认识到只有盒子的一部分可能会突起,并且夹带和其他过程会发生。具有边界在到之间的网格框的天气模型可以明确地表示对流云,尽管它们仍然需要将云的微物理参数化。大尺度云(层云类型)的形成更多的是基于物理上的,它们是在相对湿度达到某个规定值时形成的。不过,次级电网规模的过程仍然需要考虑。与其假设云的形成相对湿度是100% ,不如假设层云型云的形成临界相对湿度是70% ,而积云型云的形成率是80% 或以上,这反映了现实世界中亚网格尺度的变化。
 +
 +
【终稿】天气和气象模式
    
The amount of solar radiation reaching ground level in rugged terrain, or due to variable cloudiness, is parameterized as this process occurs on the molecular scale.<ref>{{cite book|url=https://books.google.com/books?id=lMXSpRwKNO8C&pg=PA56|title=Parameterization schemes: keys to understanding numerical weather prediction models|author=Stensrud, David J.|page=6|year=2007|publisher=Cambridge University Press|isbn=978-0-521-86540-1}}</ref>  Also, the grid size of the models is large when compared to the actual size and roughness of clouds and topography.  Sun angle as well as the impact of multiple cloud layers is taken into account.<ref>{{cite book|url=https://books.google.com/books?id=vdg5BgBmMkQC&pg=PA226|author1=Melʹnikova, Irina N.|author2=Alexander V. Vasilyev |name-list-style=amp |pages=226–228|title=Short-wave solar radiation in the earth's atmosphere: calculation, oberservation, interpretation|year=2005|publisher=Springer|isbn=978-3-540-21452-6}}</ref>  Soil type, vegetation type, and soil moisture all determine how much radiation goes into warming and how much moisture is drawn up into the adjacent atmosphere.  Thus, they are important to parameterize.<ref>{{cite book|url=https://books.google.com/books?id=lMXSpRwKNO8C&pg=PA56|title=Parameterization schemes: keys to understanding numerical weather prediction models|author=Stensrud, David J.|pages=12–14|year=2007|publisher=Cambridge University Press|isbn=978-0-521-86540-1}}</ref>
 
The amount of solar radiation reaching ground level in rugged terrain, or due to variable cloudiness, is parameterized as this process occurs on the molecular scale.<ref>{{cite book|url=https://books.google.com/books?id=lMXSpRwKNO8C&pg=PA56|title=Parameterization schemes: keys to understanding numerical weather prediction models|author=Stensrud, David J.|page=6|year=2007|publisher=Cambridge University Press|isbn=978-0-521-86540-1}}</ref>  Also, the grid size of the models is large when compared to the actual size and roughness of clouds and topography.  Sun angle as well as the impact of multiple cloud layers is taken into account.<ref>{{cite book|url=https://books.google.com/books?id=vdg5BgBmMkQC&pg=PA226|author1=Melʹnikova, Irina N.|author2=Alexander V. Vasilyev |name-list-style=amp |pages=226–228|title=Short-wave solar radiation in the earth's atmosphere: calculation, oberservation, interpretation|year=2005|publisher=Springer|isbn=978-3-540-21452-6}}</ref>  Soil type, vegetation type, and soil moisture all determine how much radiation goes into warming and how much moisture is drawn up into the adjacent atmosphere.  Thus, they are important to parameterize.<ref>{{cite book|url=https://books.google.com/books?id=lMXSpRwKNO8C&pg=PA56|title=Parameterization schemes: keys to understanding numerical weather prediction models|author=Stensrud, David J.|pages=12–14|year=2007|publisher=Cambridge University Press|isbn=978-0-521-86540-1}}</ref>
第102行: 第110行:     
当这个过程在分子尺度上发生时,在崎岖地形中到达地面的太阳辐射量,或者由于变化的云量,被参数化了。此外,网格大小的模型是大相比,实际大小和粗糙的云和地形。太阳的角度以及多个云层的影响被考虑在内。土壤类型、植被类型和土壤湿度都决定有多少辐射进入气候变暖,有多少湿气进入邻近的大气层。因此,将它们参数化很重要。
 
当这个过程在分子尺度上发生时,在崎岖地形中到达地面的太阳辐射量,或者由于变化的云量,被参数化了。此外,网格大小的模型是大相比,实际大小和粗糙的云和地形。太阳的角度以及多个云层的影响被考虑在内。土壤类型、植被类型和土壤湿度都决定有多少辐射进入气候变暖,有多少湿气进入邻近的大气层。因此,将它们参数化很重要。
 +
 +
【终稿】在因为变化的云量或崎岖的地形中达到地面的太阳辐射量被
    
==Domains==
 
==Domains==
第115行: 第125行:     
垂直坐标以各种方式处理。一些模型,如 Richardson 的1922模型,使用几何高度(z)作为垂直坐标。后来的模型用压力坐标系代替了几何 z 坐标,在压力坐标系中,等压面的位势高度变成了相关变量,极大地简化了原始方程组。这是因为通过地球大气层的压力随着高度的降低而降低。第一个用于业务预报的模式,即单层正压模式,在水平上使用单一的气压坐标,因此基本上是二维的。高分辨率模式ーー也称为中尺度模式ーー例如天气研究和预报模式往往使用称为 sigma 坐标的归一化气压坐标。
 
垂直坐标以各种方式处理。一些模型,如 Richardson 的1922模型,使用几何高度(z)作为垂直坐标。后来的模型用压力坐标系代替了几何 z 坐标,在压力坐标系中,等压面的位势高度变成了相关变量,极大地简化了原始方程组。这是因为通过地球大气层的压力随着高度的降低而降低。第一个用于业务预报的模式,即单层正压模式,在水平上使用单一的气压坐标,因此基本上是二维的。高分辨率模式ーー也称为中尺度模式ーー例如天气研究和预报模式往往使用称为 sigma 坐标的归一化气压坐标。
 +
 +
【终稿】
    
=== Global versions ===
 
=== Global versions ===
6

个编辑