第14行: |
第14行: |
| 当研究人员不能进行控制实验,但有观测数据进行建模时,逆概率加权估计量可用于证明因果关系。因为假设治疗不是随机分配的,如果总体中的所有受试者被分配了任何一种治疗,则目标是估计反事实或潜在结果。 | | 当研究人员不能进行控制实验,但有观测数据进行建模时,逆概率加权估计量可用于证明因果关系。因为假设治疗不是随机分配的,如果总体中的所有受试者被分配了任何一种治疗,则目标是估计反事实或潜在结果。 |
| | | |
− | Suppose observed data are <math>\{\bigl(X_i,A_i,Y_i\bigr)\}^{n}_{i=1}</math> drawn [[Independent and identically distributed random variables|i.i.d (independent and identically distributed)]] from unknown distribution P, where | + | Suppose observed data are <math>\{\bigl(X_i,A_i,Y_i\bigr)\}^{n}_{i=1}</math> drawn [[Independent and identically distributed random variables|i.i.d ()]] from unknown distribution P, where |
| * <math>X \in \mathbb{R}^{p}</math> covariates | | * <math>X \in \mathbb{R}^{p}</math> covariates |
| * <math>A \in \{0, 1\}</math> are the two possible treatments. | | * <math>A \in \{0, 1\}</math> are the two possible treatments. |
第28行: |
第28行: |
| The goal is to estimate the potential outcome, Y^{*}\bigl(a\bigr), that would be observed if the subject were assigned treatment a. Then compare the mean outcome if all patients in the population were assigned either treatment: \mu_{a} = \mathbb{E}Y^{*}(a). We want to estimate \mu_a using observed data \{\bigl(X_i,A_i,Y_i\bigr)\}^{n}_{i=1}. | | The goal is to estimate the potential outcome, Y^{*}\bigl(a\bigr), that would be observed if the subject were assigned treatment a. Then compare the mean outcome if all patients in the population were assigned either treatment: \mu_{a} = \mathbb{E}Y^{*}(a). We want to estimate \mu_a using observed data \{\bigl(X_i,A_i,Y_i\bigr)\}^{n}_{i=1}. |
| | | |
− | 假设观测数据是<math>\{\bigl(X_i,A_i,Y_i\bigr)\}^{n}_{i=1}</math>,这些数据是从未知的分布中抽取出来的独立同分布数据,其中 | + | 假设观测数据是<math>\{\bigl(X_i,A_i,Y_i\bigr)\}^{n}_{i=1}</math>,这些数据是从未知的分布中抽取出来的独立同分布([[Independent and identically distributed random variables|independent and identically distributed, i.i.d]])数据,其中 |
| * <math>X \in \mathbb{R}^{p}</math> 为协变量; | | * <math>X \in \mathbb{R}^{p}</math> 为协变量; |
| * <math>A \in \{0, 1\}</math> 是两个可能的处理; | | * <math>A \in \{0, 1\}</math> 是两个可能的处理; |