第95行: |
第95行: |
| where <math> V = V_{rest} - V_m </math> denotes the negative depolarization in mV. | | where <math> V = V_{rest} - V_m </math> denotes the negative depolarization in mV. |
| | | |
− | p_\infty and (1-p_\infty) are the steady state values for activation and inactivation, respectively, and are usually represented by Boltzmann equations as functions of V_m. In the original paper by Hodgkin and Huxley, the functions \alpha and \beta are given by | + | |
− | : \begin{array}{lll}
| + | <math>p_\infty</math> 和 <math>(1-p_\infty)</math>分别是激活和失活的稳态值,通常用 Boltzmann 方程表示为 <math>V_m</math>的函数。 |
| + | 在 Hodgkin 和 Huxley 的原始论文中,alpha 和 beta函数如下给出<math> \begin{array}{lll} |
| \alpha_n(V_m) = \frac{0.01(10-V)}{\exp\big(\frac{10-V}{10}\big)-1} & \alpha_m(V_m) = \frac{0.1(25-V)}{\exp\big(\frac{25-V}{10}\big)-1} & \alpha_h(V_m) = 0.07\exp\bigg(-\frac{V}{20}\bigg)\\ | | \alpha_n(V_m) = \frac{0.01(10-V)}{\exp\big(\frac{10-V}{10}\big)-1} & \alpha_m(V_m) = \frac{0.1(25-V)}{\exp\big(\frac{25-V}{10}\big)-1} & \alpha_h(V_m) = 0.07\exp\bigg(-\frac{V}{20}\bigg)\\ |
| \beta_n(V_m) = 0.125\exp\bigg(-\frac{V}{80}\bigg) & \beta_m(V_m) = 4\exp\bigg(-\frac{V}{18}\bigg) & \beta_h(V_m) = \frac{1}{\exp\big(\frac{30-V}{10}\big) + 1} | | \beta_n(V_m) = 0.125\exp\bigg(-\frac{V}{80}\bigg) & \beta_m(V_m) = 4\exp\bigg(-\frac{V}{18}\bigg) & \beta_h(V_m) = \frac{1}{\exp\big(\frac{30-V}{10}\big) + 1} |
− | \end{array} | + | \end{array} </math>其中<math> V = V_{rest} - V_m </math> 表示mV 中的负去极化(???) |
− | where V = V_{rest} - V_m denotes the negative depolarization in mV.
| + | |
| | | |
− | P _ infty 和(1-p _ infty)分别是激活和失活的稳态值,通常用 Boltzmann 方程表示为 v _ m 的函数。
| |
− | 在 Hodgkin 和 Huxley 的原始论文中,alpha 和 beta函数如下给出
| |
− | begin { array }{ lll } alpha _ n (v _ m) = frac {0.01(10-V)}{ exp big (frac {10-V }{10} big)-1} & alpha _ m (v _ m) = frac {0.1(25-V)}{ exp big (frac {25-V }{10} big)-1} & alpha _ h (v _ m) = 0.07 expBigg (- frac { v } bigg) beta _ n (v _ m) = 0.125 exp bigg (- frac { v } bigg) & beta _ m (v _ m) = 4 exp bigg (- frac { v }{18} bigg) & beta _ h ()V _ m) = frac {1}{ exp big (frac {30-V }{10} big) + 1} end { array }
| |
− | 其中...表示mV 中的负去极化(???)
| |
| | | |
| While in many current software programs,<ref>Nelson ME (2005) [http://nelson.beckman.illinois.edu/courses/physl317/part1/Lec3_HHsection.pdf Electrophysiological Models In: Databasing the Brain: From Data to Knowledge.] (S. Koslow and S. Subramaniam, eds.) Wiley, New York, pp. 285–301</ref> | | While in many current software programs,<ref>Nelson ME (2005) [http://nelson.beckman.illinois.edu/courses/physl317/part1/Lec3_HHsection.pdf Electrophysiological Models In: Databasing the Brain: From Data to Knowledge.] (S. Koslow and S. Subramaniam, eds.) Wiley, New York, pp. 285–301</ref> |