更改

添加286字节 、 2022年4月4日 (一) 15:50
无编辑摘要
第19行: 第19行:  
Large-scale brain networks are identified by their function and provide a coherent framework for understanding cognition by offering a neural model of how different cognitive functions emerge when different sets of brain regions join together as self-organized coalitions. The number and composition of the coalitions will vary with the algorithm and parameters used to identify them. In one model, there is only the default mode network and the task-positive network, but most current analyses show several networks, from a small handful to 17. The most common  and stable networks are enumerated below. The regions participating in a functional network may be dynamically reconfigured.
 
Large-scale brain networks are identified by their function and provide a coherent framework for understanding cognition by offering a neural model of how different cognitive functions emerge when different sets of brain regions join together as self-organized coalitions. The number and composition of the coalitions will vary with the algorithm and parameters used to identify them. In one model, there is only the default mode network and the task-positive network, but most current analyses show several networks, from a small handful to 17. The most common  and stable networks are enumerated below. The regions participating in a functional network may be dynamically reconfigured.
   −
大规模的大脑网络是通过其功能识别的,并通过提供一个神经模型,说明当不同的大脑区域组合在一起形成自组织的联盟时,不同的认知功能是如何产生的,从而为理解认知提供了一个连贯的框架。联盟的数量和组成将根据识别联盟的算法和参数而有所不同。在一个模型中,只有默认模式网络和任务正向网络,但目前大多数分析显示,从少数到17个网络。下面列举了最常见和最稳定的网络。可以动态地重新配置参与功能网络的区域。
+
大规模脑网络是通过其功能来进行识别的。通过研究大规模脑网络建立神经模型,对不同脑区组合所形成的自组织联合体如何实现不同的'''<font color="#ff8000">认知Cognition</font>'''功能进行解释,就能够为认知理解提供一个连贯的框架。识别算法和参数的不同会导致所识别出的上述联合体的数量和组成有所不同。(一个模型理论认为,符合上述条件的神经模型只包含'''<font color="#ff8000">默认模式网络Default mode network</font>'''和'''<font color="#ff8000">任务激活网络Task-positive network</font>''',但目前大多数分析理论都包括从几个到17个不等的网络。)CY下面列举了最常见且稳定的网络。'''<font color="#32CD32"> (人脑)</font>'''可以动态地重新配置参与功能网络的脑区。
    
Disruptions in activity in various networks have been implicated in neuropsychiatric disorders such as [[Depression (mood)|depression]], [[Alzheimer's disease|Alzheimer's]], [[Autism-spectrum disorder|autism spectrum disorder]], [[schizophrenia]], [[ADHD]]<ref>{{cite journal |last1=Griffiths |first1=Kristi R. |last2=Braund |first2=Taylor A. |last3=Kohn |first3=Michael R. |last4=Clarke |first4=Simon |last5=Williams |first5=Leanne M. |last6=Korgaonkar |first6=Mayuresh S. |title=Structural brain network topology underpinning ADHD and response to methylphenidate treatment |journal=Translational Psychiatry |date=2 March 2021 |volume=11 |issue=1 |pages=1–9 |doi=10.1038/s41398-021-01278-x | pmc=7925571 |pmid=33654073 |url=https://www.nature.com/articles/s41398-021-01278-x#citeas |access-date=16 November 2021}}</ref> and [[bipolar disorder]].<ref>{{Cite journal|url=https://www.researchgate.net/publication/51639686|title=Large-scale brain networks and psychopathology: A unifying triple network model|last=Menon|first=Vinod|s2cid=26653572|journal=Trends in Cognitive Sciences|date=2011-09-09|volume=15|issue=10|pages=483–506|doi=10.1016/j.tics.2011.08.003|pmid=21908230}}</ref>
 
Disruptions in activity in various networks have been implicated in neuropsychiatric disorders such as [[Depression (mood)|depression]], [[Alzheimer's disease|Alzheimer's]], [[Autism-spectrum disorder|autism spectrum disorder]], [[schizophrenia]], [[ADHD]]<ref>{{cite journal |last1=Griffiths |first1=Kristi R. |last2=Braund |first2=Taylor A. |last3=Kohn |first3=Michael R. |last4=Clarke |first4=Simon |last5=Williams |first5=Leanne M. |last6=Korgaonkar |first6=Mayuresh S. |title=Structural brain network topology underpinning ADHD and response to methylphenidate treatment |journal=Translational Psychiatry |date=2 March 2021 |volume=11 |issue=1 |pages=1–9 |doi=10.1038/s41398-021-01278-x | pmc=7925571 |pmid=33654073 |url=https://www.nature.com/articles/s41398-021-01278-x#citeas |access-date=16 November 2021}}</ref> and [[bipolar disorder]].<ref>{{Cite journal|url=https://www.researchgate.net/publication/51639686|title=Large-scale brain networks and psychopathology: A unifying triple network model|last=Menon|first=Vinod|s2cid=26653572|journal=Trends in Cognitive Sciences|date=2011-09-09|volume=15|issue=10|pages=483–506|doi=10.1016/j.tics.2011.08.003|pmid=21908230}}</ref>
第42行: 第42行:       −
*The default mode network is active when an individual is awake and at rest. It preferentially activates when individuals focus on internally-oriented tasks such as daydreaming, envisioning the future, retrieving memories, and theory of mind. It is negatively correlated with brain systems that focus on external visual signals. It is the most widely researched network.
+
* The default mode network is active when an individual is awake and at rest. It preferentially activates when individuals focus on internally-oriented tasks such as daydreaming, envisioning the future, retrieving memories, and theory of mind. It is negatively correlated with brain systems that focus on external visual signals. It is the most widely researched network.
      第48行: 第48行:  
*默认模式网络在个人清醒和休息时处于活动状态。当个体专注于面向内部的任务时,比如做白日梦、展望未来、回忆和心理理论,它就会优先激活。它与专注于外部视觉信号的大脑系统负相关。它是研究最广泛的网络。
 
*默认模式网络在个人清醒和休息时处于活动状态。当个体专注于面向内部的任务时,比如做白日梦、展望未来、回忆和心理理论,它就会优先激活。它与专注于外部视觉信号的大脑系统负相关。它是研究最广泛的网络。
   −
=== Salience (Midcingulo-Insular)===
+
===Salience (Midcingulo-Insular)===
 
{{Main|Salience network}}
 
{{Main|Salience network}}
 
*The salience network consists of several structures, including the anterior (bilateral) insula, dorsal anterior cingulate cortex, and three subcortical structures which are the ventral striatum, substantia nigra/ventral tegmental region.<ref>{{Cite journal|last1=Steimke|first1=Rosa|last2=Nomi|first2=Jason S.|last3=Calhoun|first3=Vince D.|last4=Stelzel|first4=Christine|last5=Paschke|first5=Lena M.|last6=Gaschler|first6=Robert|last7=Goschke|first7=Thomas|last8=Walter|first8=Henrik|last9=Uddin|first9=Lucina Q.|date=2017-12-01|title=Salience network dynamics underlying successful resistance of temptation|journal=Social Cognitive and Affective Neuroscience|language=en|volume=12|issue=12|pages=1928–1939|doi=10.1093/scan/nsx123|pmid=29048582|pmc=5716209|issn=1749-5016|doi-access=free}}</ref><ref name=":0">{{Citation|last=Menon|first=V.|title=Brain Mapping|chapter=Salience Network|date=2015-01-01|chapter-url=http://www.sciencedirect.com/science/article/pii/B978012397025100052X|pages=597–611|editor-last=Toga|editor-first=Arthur W.|publisher=Academic Press|isbn=978-0-12-397316-0|access-date=2019-12-08|doi=10.1016/B978-0-12-397025-1.00052-X}}</ref> It plays the key role of monitoring the [[Salience (neuroscience)|salience]] of external inputs and internal brain events.<ref name="Riedl" /><ref name="Bressler" /><ref name="Bassett" /><ref name="Yuan" /><ref name="Heine" /><ref name="Yeo" /><ref name="Shafiei" /> Specifically, it aids in directing attention by identifying important biological and cognitive events.<ref name=":0" /><ref name="Bailey" />
 
*The salience network consists of several structures, including the anterior (bilateral) insula, dorsal anterior cingulate cortex, and three subcortical structures which are the ventral striatum, substantia nigra/ventral tegmental region.<ref>{{Cite journal|last1=Steimke|first1=Rosa|last2=Nomi|first2=Jason S.|last3=Calhoun|first3=Vince D.|last4=Stelzel|first4=Christine|last5=Paschke|first5=Lena M.|last6=Gaschler|first6=Robert|last7=Goschke|first7=Thomas|last8=Walter|first8=Henrik|last9=Uddin|first9=Lucina Q.|date=2017-12-01|title=Salience network dynamics underlying successful resistance of temptation|journal=Social Cognitive and Affective Neuroscience|language=en|volume=12|issue=12|pages=1928–1939|doi=10.1093/scan/nsx123|pmid=29048582|pmc=5716209|issn=1749-5016|doi-access=free}}</ref><ref name=":0">{{Citation|last=Menon|first=V.|title=Brain Mapping|chapter=Salience Network|date=2015-01-01|chapter-url=http://www.sciencedirect.com/science/article/pii/B978012397025100052X|pages=597–611|editor-last=Toga|editor-first=Arthur W.|publisher=Academic Press|isbn=978-0-12-397316-0|access-date=2019-12-08|doi=10.1016/B978-0-12-397025-1.00052-X}}</ref> It plays the key role of monitoring the [[Salience (neuroscience)|salience]] of external inputs and internal brain events.<ref name="Riedl" /><ref name="Bressler" /><ref name="Bassett" /><ref name="Yuan" /><ref name="Heine" /><ref name="Yeo" /><ref name="Shafiei" /> Specifically, it aids in directing attention by identifying important biological and cognitive events.<ref name=":0" /><ref name="Bailey" />
* This network includes the ventral attention network, which primarily includes the [[temporoparietal junction]] and the ventral [[frontal cortex]] of the right hemisphere.<ref name="Uddin2019" /><ref name="Vossel" /> These areas respond when behaviorally relevant stimuli occur unexpectedly.<ref name="Vossel" /> The ventral attention network is inhibited during focused attention in which top-down processing is being used, such as when visually searching for something. This response may prevent goal-driven attention from being distracted by non-relevant stimuli. It becomes active again when the target or relevant information about the target is found.<ref name="Vossel" /><ref>{{Cite journal|last1=Shulman|first1=Gordon L.|last2=McAvoy|first2=Mark P.|last3=Cowan|first3=Melanie C.|last4=Astafiev|first4=Serguei V.|last5=Tansy|first5=Aaron P.|last6=d'Avossa|first6=Giovanni|last7=Corbetta|first7=Maurizio|date=2003-11-01|title=Quantitative Analysis of Attention and Detection Signals During Visual Search|journal=Journal of Neurophysiology|volume=90|issue=5|pages=3384–3397|doi=10.1152/jn.00343.2003|pmid=12917383|issn=0022-3077}}</ref>
+
*This network includes the ventral attention network, which primarily includes the [[temporoparietal junction]] and the ventral [[frontal cortex]] of the right hemisphere.<ref name="Uddin2019" /><ref name="Vossel" /> These areas respond when behaviorally relevant stimuli occur unexpectedly.<ref name="Vossel" /> The ventral attention network is inhibited during focused attention in which top-down processing is being used, such as when visually searching for something. This response may prevent goal-driven attention from being distracted by non-relevant stimuli. It becomes active again when the target or relevant information about the target is found.<ref name="Vossel" /><ref>{{Cite journal|last1=Shulman|first1=Gordon L.|last2=McAvoy|first2=Mark P.|last3=Cowan|first3=Melanie C.|last4=Astafiev|first4=Serguei V.|last5=Tansy|first5=Aaron P.|last6=d'Avossa|first6=Giovanni|last7=Corbetta|first7=Maurizio|date=2003-11-01|title=Quantitative Analysis of Attention and Detection Signals During Visual Search|journal=Journal of Neurophysiology|volume=90|issue=5|pages=3384–3397|doi=10.1152/jn.00343.2003|pmid=12917383|issn=0022-3077}}</ref>
      −
*The salience network consists of several structures, including the anterior (bilateral) insula, dorsal anterior cingulate cortex, and three subcortical structures which are the ventral striatum, substantia nigra/ventral tegmental region. It plays the key role of monitoring the salience of external inputs and internal brain events. Specifically, it aids in directing attention by identifying important biological and cognitive events.
+
* The salience network consists of several structures, including the anterior (bilateral) insula, dorsal anterior cingulate cortex, and three subcortical structures which are the ventral striatum, substantia nigra/ventral tegmental region. It plays the key role of monitoring the salience of external inputs and internal brain events. Specifically, it aids in directing attention by identifying important biological and cognitive events.
 
*This network includes the ventral attention network, which primarily includes the temporoparietal junction and the ventral frontal cortex of the right hemisphere. These areas respond when behaviorally relevant stimuli occur unexpectedly. The ventral attention network is inhibited during focused attention in which top-down processing is being used, such as when visually searching for something. This response may prevent goal-driven attention from being distracted by non-relevant stimuli. It becomes active again when the target or relevant information about the target is found.
 
*This network includes the ventral attention network, which primarily includes the temporoparietal junction and the ventral frontal cortex of the right hemisphere. These areas respond when behaviorally relevant stimuli occur unexpectedly. The ventral attention network is inhibited during focused attention in which top-down processing is being used, such as when visually searching for something. This response may prevent goal-driven attention from being distracted by non-relevant stimuli. It becomes active again when the target or relevant information about the target is found.
   第85行: 第85行:       −
*这种网络的版本也被称为中央执行(或执行控制)网络和认知控制网络。
+
* 这种网络的版本也被称为中央执行(或执行控制)网络和认知控制网络。
    
===Sensorimotor or Somatomotor (Pericentral)===
 
===Sensorimotor or Somatomotor (Pericentral)===
第101行: 第101行:  
===Visual (Occipital)===
 
===Visual (Occipital)===
 
{{See|Visual cortex}}
 
{{See|Visual cortex}}
*This network handles visual information processing.<ref name="Yang">{{cite journal|last1=Yang|first1=Yan-li|last2=Deng|first2=Hong-xia|last3=Xing|first3=Gui-yang|last4=Xia|first4=Xiao-luan|last5=Li|first5=Hai-fang|title=Brain functional network connectivity based on a visual task: visual information processing-related brain regions are significantly activated in the task state|journal=Neural Regeneration Research|date=2015|volume=10|issue=2|pages=298–307|doi=10.4103/1673-5374.152386|pmid=25883631|pmc=4392680 }}</ref>
+
* This network handles visual information processing.<ref name="Yang">{{cite journal|last1=Yang|first1=Yan-li|last2=Deng|first2=Hong-xia|last3=Xing|first3=Gui-yang|last4=Xia|first4=Xiao-luan|last5=Li|first5=Hai-fang|title=Brain functional network connectivity based on a visual task: visual information processing-related brain regions are significantly activated in the task state|journal=Neural Regeneration Research|date=2015|volume=10|issue=2|pages=298–307|doi=10.4103/1673-5374.152386|pmid=25883631|pmc=4392680 }}</ref>
      第108行: 第108行:  
= = = = = = = = = = = = = 这个网络处理视觉信息。
 
= = = = = = = = = = = = = 这个网络处理视觉信息。
   −
==Other networks ==
+
==Other networks==
 
Different methods and data have identified several other brain networks, many of which greatly overlap or are subsets of more well-characterized core networks.<ref name="Uddin2019" />
 
Different methods and data have identified several other brain networks, many of which greatly overlap or are subsets of more well-characterized core networks.<ref name="Uddin2019" />
 
*Limbic<ref name="Bassett" /><ref name="Yeo" /><ref name="Bailey" />
 
*Limbic<ref name="Bassett" /><ref name="Yeo" /><ref name="Bailey" />
 
*Auditory<ref name="Yuan" /><ref name="Heine" />
 
*Auditory<ref name="Yuan" /><ref name="Heine" />
 
*Right/left executive<ref name="Yuan" /><ref name="Heine" />
 
*Right/left executive<ref name="Yuan" /><ref name="Heine" />
* Cerebellar<ref name="Bell" /><ref name="Heine" />
+
*Cerebellar<ref name="Bell" /><ref name="Heine" />
 
*Spatial attention<ref name="Riedl" /><ref name="Bressler" />
 
*Spatial attention<ref name="Riedl" /><ref name="Bressler" />
 
*Language<ref name="Bressler" /><ref name="Hutton" />
 
*Language<ref name="Bressler" /><ref name="Hutton" />
 
*Lateral visual<ref name="Yuan" /><ref name="Bell" /><ref name="Heine" />
 
*Lateral visual<ref name="Yuan" /><ref name="Bell" /><ref name="Heine" />
* Temporal<ref name="Yeo" /><ref name="Shafiei" />
+
*Temporal<ref name="Yeo" /><ref name="Shafiei" />
 
*Visual perception/imagery<ref name="Hutton" />
 
*Visual perception/imagery<ref name="Hutton" />
   第126行: 第126行:  
*Cerebellar
 
*Cerebellar
 
*Spatial attention
 
*Spatial attention
*Language
+
* Language
 
*Lateral visual
 
*Lateral visual
 
*Temporal
 
*Temporal
第132行: 第132行:     
其他网络不同的方法和数据已经确定了其他几个大脑网络,其中许多网络极大地重叠或者是更具特色的核心网络的子集。
 
其他网络不同的方法和数据已经确定了其他几个大脑网络,其中许多网络极大地重叠或者是更具特色的核心网络的子集。
*边缘
+
* 边缘
 
*听觉
 
*听觉
 
*右/左执行
 
*右/左执行
第138行: 第138行:  
*空间注意
 
*空间注意
 
*语言
 
*语言
* 外侧视觉
+
*外侧视觉
 
*颞视知觉/图像
 
*颞视知觉/图像
   −
== See also==
+
==See also==
 
*[[Complex network]]
 
*[[Complex network]]
 
*[[Neural network]]
 
*[[Neural network]]
43

个编辑