更改

删除119字节 、 2022年4月16日 (六) 22:23
无编辑摘要
第29行: 第29行:     
将碳与氢和氧结合成能源需要太阳光,但对于阳光无法达及的深海生态系统而言,其从硫中获取能量。热液喷口附近的硫化氢可以被巨型管虫等生物体利用。在硫循环中,硫可以作为能量源被永续循环利用。能量可以通过硫化物的氧化和还原来释放(例如硫被氧化为亚硫酸盐,再被氧化为硫酸盐)。
 
将碳与氢和氧结合成能源需要太阳光,但对于阳光无法达及的深海生态系统而言,其从硫中获取能量。热液喷口附近的硫化氢可以被巨型管虫等生物体利用。在硫循环中,硫可以作为能量源被永续循环利用。能量可以通过硫化物的氧化和还原来释放(例如硫被氧化为亚硫酸盐,再被氧化为硫酸盐)。
 +
    
<gallery mode=packed style=float:left; heights=170px>
 
<gallery mode=packed style=float:left; heights=170px>
第51行: 第52行:     
==箱模型==
 
==箱模型==
[[File:Simple box model.png|thumb|upright=1|right| {{center|'''Basic one-box model'''}}]]  
+
[[File:Simple box model.png|thumb|upright=1|right|基本单箱模型]]  
 
箱模型被广泛用于生物地球化学系统建模。<ref name=Sarmiento1984>{{cite journal| author = Sarmiento, J.L.|author2=Toggweiler, J.R.| year = 1984| title = A new model for the role of the oceans in determining atmospheric P CO 2| journal = Nature| volume = 308| pages = 621–24| doi = 10.1038/308621a0| issue=5960 |bibcode = 1984Natur.308..621S }}</ref><ref name=Bianchi2007>[[Thomas S. Bianchi|Bianchi, Thomas]] (2007) [https://books.google.com/books?id=3no8DwAAQBAJ&printsec=frontcover&dq=%22Biogeochemistry+of+Estuaries%22&hl=en&newbks=1&newbks_redir=0&sa=X&ved=2ahUKEwixq4PYm_brAhXYILcAHUVzBf0QuwUwAHoECAIQBw#v=onepage&q=%22Biogeochemistry%20of%20Estuaries%22&f=false ''Biogeochemistry of Estuaries''] page 9, Oxford University Press. .</ref>箱模型是复杂系统的简化版本,将其简化为存放化学物质的箱(或储库),并由物质通量(流)进行连接。简单的箱模型含有少量属性不随时间变化的箱室,例如体积。这些箱室的行为被假定为是均匀混合的。这些模型经常被用于推导出解析公式以描述所涉及的化学物质的动力学和稳态丰度。
 
箱模型被广泛用于生物地球化学系统建模。<ref name=Sarmiento1984>{{cite journal| author = Sarmiento, J.L.|author2=Toggweiler, J.R.| year = 1984| title = A new model for the role of the oceans in determining atmospheric P CO 2| journal = Nature| volume = 308| pages = 621–24| doi = 10.1038/308621a0| issue=5960 |bibcode = 1984Natur.308..621S }}</ref><ref name=Bianchi2007>[[Thomas S. Bianchi|Bianchi, Thomas]] (2007) [https://books.google.com/books?id=3no8DwAAQBAJ&printsec=frontcover&dq=%22Biogeochemistry+of+Estuaries%22&hl=en&newbks=1&newbks_redir=0&sa=X&ved=2ahUKEwixq4PYm_brAhXYILcAHUVzBf0QuwUwAHoECAIQBw#v=onepage&q=%22Biogeochemistry%20of%20Estuaries%22&f=false ''Biogeochemistry of Estuaries''] page 9, Oxford University Press. .</ref>箱模型是复杂系统的简化版本,将其简化为存放化学物质的箱(或储库),并由物质通量(流)进行连接。简单的箱模型含有少量属性不随时间变化的箱室,例如体积。这些箱室的行为被假定为是均匀混合的。这些模型经常被用于推导出解析公式以描述所涉及的化学物质的动力学和稳态丰度。
   第65行: 第66行:  
当两个或多个储库相连通时,可以认为物质在储库之间循环,且循环流动具有可预测的模式。<ref name=Bianchi2007 />更复杂的多箱模型通常用数值方法求解。
 
当两个或多个储库相连通时,可以认为物质在储库之间循环,且循环流动具有可预测的模式。<ref name=Bianchi2007 />更复杂的多箱模型通常用数值方法求解。
   −
[[File:Simplified budget of carbon flows in the ocean.png|thumb|upright=0.9|left| {{center|'''Simple three box model'''<br /> <small>simplified budget of ocean carbon flows<ref name=Middelburg2019>Middelburg, J.J.(2019) ''Marine carbon biogeochemistry: a primer for earth system scientists'', page 5, Springer Nature. [[File:CC-BY icon.svg|50px]] Material was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License].</ref></small>]]
+
[[File:Simplified budget of carbon flows in the ocean.png|thumb|upright=0.9|left| 简单三箱模型 <small>海洋碳流的简化预算<ref name=Middelburg2019>Middelburg, J.J.(2019) ''Marine carbon biogeochemistry: a primer for earth system scientists'', page 5, Springer Nature. [[File:CC-BY icon.svg|50px]] Material was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License].</ref></small>]]
   −
[[File:Simplified diagram of the global carbon cycle.jpg|thumb|upright=2.2|right| {{center|'''More complex model with many interacting boxes'''<br /><small>export and burial rates of terrestrial organic carbon in the ocean{{hsp}}<ref name=Kandasamy2016 /></small>}}]]
+
[[File:Simplified diagram of the global carbon cycle.jpg|thumb|upright=2.2|right| {{center|'''更复杂的模型,有许多相互作用的箱子'''<br /><small>陆生有机碳在海洋中的输出和埋藏率 <ref name=Kandasamy2016 /></small>}}]]
      第79行: 第80行:  
==隔室==
 
==隔室==
 
===生物圈===
 
===生物圈===
[[File:Role of marine organisms in biogeochemical cycling.jpg|thumb|upright=2.1| {{center|Role of marine organisms in biogeochemical cycling in the Southern Ocean{{hsp}}<ref name=Henley2020>{{cite journal |title = Changing Biogeochemistry of the Southern Ocean and Its Ecosystem Implications|year = 2020|doi = 10.3389/fmars.2020.00581|doi-access = free|last1 = Henley|first1 = Sian F.|last2 = Cavan|first2 = Emma L.|last3 = Fawcett|first3 = Sarah E.|last4 = Kerr|first4 = Rodrigo|last5 = Monteiro|first5 = Thiago|last6 = Sherrell|first6 = Robert M.|last7 = Bowie|first7 = Andrew R.|last8 = Boyd|first8 = Philip W.|last9 = Barnes|first9 = David K. A.|last10 = Schloss|first10 = Irene R.|last11 = Marshall|first11 = Tanya|last12 = Flynn|first12 = Raquel|last13 = Smith|first13 = Shantelle|journal = Frontiers in Marine Science|volume = 7}} [[File:CC-BY icon.svg|50px]] Material was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License].</ref>}}]]
+
[[File:Role of marine organisms in biogeochemical cycling.jpg|thumb|upright=2.1|海洋生物在南大洋生物地球化学循环中的作用  <ref name=Henley2020>{{cite journal |title = Changing Biogeochemistry of the Southern Ocean and Its Ecosystem Implications|year = 2020|doi = 10.3389/fmars.2020.00581|doi-access = free|last1 = Henley|first1 = Sian F.|last2 = Cavan|first2 = Emma L.|last3 = Fawcett|first3 = Sarah E.|last4 = Kerr|first4 = Rodrigo|last5 = Monteiro|first5 = Thiago|last6 = Sherrell|first6 = Robert M.|last7 = Bowie|first7 = Andrew R.|last8 = Boyd|first8 = Philip W.|last9 = Barnes|first9 = David K. A.|last10 = Schloss|first10 = Irene R.|last11 = Marshall|first11 = Tanya|last12 = Flynn|first12 = Raquel|last13 = Smith|first13 = Shantelle|journal = Frontiers in Marine Science|volume = 7}} [[File:CC-BY icon.svg|50px]] Material was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License].</ref>}}]]
[[File:Oxygen Cycle.jpg|thumb| {{center|[[Oxygen cycle]]}}]]
+
[[File:Oxygen Cycle.jpg|thumb| 氧循环]]
 
微生物驱动了地球系统中大部分的生物地球化学循环。<ref>{{cite journal |title = The Microbial Engines That Drive Earth's Biogeochemical Cycles|year = 2008|doi = 10.1126/science.1153213|last1 = Falkowski|first1 = P. G.|last2 = Fenchel|first2 = T.|last3 = Delong|first3 = E. F.|journal = Science|volume = 320|issue = 5879|pages = 1034–1039|pmid = 18497287|bibcode = 2008Sci...320.1034F}}</ref><ref name=Zakem2020>{{cite journal |title = Redox-informed models of global biogeochemical cycles|year = 2020|doi = 10.1038/s41467-020-19454-w|last1 = Zakem|first1 = Emily J.|last2 = Polz|first2 = Martin F.|last3 = Follows|first3 = Michael J.|journal = Nature Communications|volume = 11|issue = 1|page = 5680|pmc = 7656242|bibcode = 2020NatCo..11.5680Z}} [[File:CC-BY icon.svg|50px]] Material was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License].</ref>
 
微生物驱动了地球系统中大部分的生物地球化学循环。<ref>{{cite journal |title = The Microbial Engines That Drive Earth's Biogeochemical Cycles|year = 2008|doi = 10.1126/science.1153213|last1 = Falkowski|first1 = P. G.|last2 = Fenchel|first2 = T.|last3 = Delong|first3 = E. F.|journal = Science|volume = 320|issue = 5879|pages = 1034–1039|pmid = 18497287|bibcode = 2008Sci...320.1034F}}</ref><ref name=Zakem2020>{{cite journal |title = Redox-informed models of global biogeochemical cycles|year = 2020|doi = 10.1038/s41467-020-19454-w|last1 = Zakem|first1 = Emily J.|last2 = Polz|first2 = Martin F.|last3 = Follows|first3 = Michael J.|journal = Nature Communications|volume = 11|issue = 1|page = 5680|pmc = 7656242|bibcode = 2020NatCo..11.5680Z}} [[File:CC-BY icon.svg|50px]] Material was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License].</ref>
  
7,129

个编辑