第51行: |
第51行: |
| 1.2.2 贝叶斯网络 Bayesian Networks 13 | | 1.2.2 贝叶斯网络 Bayesian Networks 13 |
| | | |
− | * 介绍了马尔可夫父母的定义,这有利于简化贝叶斯模型的输入信息,以及马尔可夫兼容性的定义。 | + | * 介绍了马尔可夫父代的定义,这有利于简化贝叶斯模型的输入信息,以及马尔可夫相容性的定义。 |
| | | |
| 1.2.3 d-分离准则 The d-Separation Criterion 16 | | 1.2.3 d-分离准则 The d-Separation Criterion 16 |
| + | |
| + | * d-分离的定义,以及概率下的d-分离,有序马尔可夫条件,父代马尔可夫条件,观测等价性这些定理。 |
| | | |
| * | | * |
第61行: |
第63行: |
| '''1.3 因果贝叶斯网络 Causal Bayesian Networks 21''' | | '''1.3 因果贝叶斯网络 Causal Bayesian Networks 21''' |
| | | |
− | 1.3.1 Causal Networks as Oracles for Interventions 22 | + | 1.3.1 作为Oracle的被干预的因果网络 Causal Networks as Oracles for Interventions 22 |
| + | |
| + | * 因果贝叶斯网络的定义和两个性质 |
| + | |
| + | 1.3.2 因果关系和它们的稳定性 Causal Relationships and Their Stability 24 |
| + | |
| + | * 说明了因果关系为何比概率关系稳定,因果关系的重要性。 |
| + | |
| + | '''1.4 函数因果模型 Functional Causal Models 26''' |
| + | |
| + | 1.4.1 结构等式 Structural Equations 27 |
| + | |
| + | 1.4.2 因果模型中的概率预测 Probabilistic Predictions in Causal Models 30 |
| | | |
− | 1.3.2 Causal Relationships and Their Stability 24
| + | * 介绍了因果马尔可夫条件,其通过父代马尔科夫条件建立了因果和概率间的联系 |
| | | |
− | '''1.4 Functional Causal Models 26'''
| + | 1.4.3 函数模型中的干预和因果效应 Interventions and Causal Effects in Functional Models 32 |
| | | |
− | 1.4.1 Structural Equations 27
| + | * 阐释了为什么干预在函数模型中的表示比在随机模型更灵活和通用 |
| | | |
− | 1.4.2 Probabilistic Predictions in Causal Models 30 | + | 1.4.4 函数模型中的反事实 Counterfactuals in Functional Models 33 |
| | | |
− | 1.4.3 Interventions and Causal Effects in Functional Models 32
| + | * 强调了回答反事实问题是困难的,说明了反事实和结构等式间的关系,随机因果模型不足以计算反事实中概率的真正原因。 |
| | | |
− | 1.4.4 Counterfactuals in Functional Models 33 | + | '''1.5 因果和统计学的术语 Causal versus Statistical Terminology 38''' |
| | | |
− | '''1.5 Causal versus Statistical Terminology 38'''
| + | * 介绍了概率参数,统计参数,因果参数,统计假设与因果假设。 |
| + | * 对比了统计学与因果科学术语的差异 |
| | | |
| === 2 推断因果理论 A Theory of Inferred Causation 41 === | | === 2 推断因果理论 A Theory of Inferred Causation 41 === |