更改

删除16字节 、 2020年4月13日 (一) 01:56
第101行: 第101行:  
曼德布洛特集也可以定义为一族'''多项式 Polynomials'''的'''连通轨迹  Connectedness Locus'''。
 
曼德布洛特集也可以定义为一族'''多项式 Polynomials'''的'''连通轨迹  Connectedness Locus'''。
   −
==基本性质 Basic properties==
+
== 基本性质 ==
    
The Mandelbrot set is a compact set, since it is closed and contained in the closed disk of radius 2 around the origin. More specifically, a point {\displaystyle c}{ displaystyle c } belongs to the Mandelbrot set if and only if<math>|P_c^n(0)|\leq 2</math> for all {\displaystyle n\geq 0.}
 
The Mandelbrot set is a compact set, since it is closed and contained in the closed disk of radius 2 around the origin. More specifically, a point {\displaystyle c}{ displaystyle c } belongs to the Mandelbrot set if and only if<math>|P_c^n(0)|\leq 2</math> for all {\displaystyle n\geq 0.}
7,129

个编辑