更改

翻译完了所有目录信息
第493行: 第493行:  
11.4.4 do(x)算子是通用的吗?  Is the do(x) Operator Universal?  359
 
11.4.4 do(x)算子是通用的吗?  Is the do(x) Operator Universal?  359
   −
11.4.5 Causation without Manipulation!!!   361
+
11.4.5 没有操作的因果关系!  Causation without Manipulation!!!   361
   −
11.4.6 Hunting Causes with Cartwright  362
+
11.4.6 与卡特赖特一起追寻原因  Hunting Causes with Cartwright  362
   −
11.4.7 The Illusion of Nonmodularity  364
+
11.4.7 非模块化的错觉  The Illusion of Nonmodularity  364
   −
'''11.5 Causal Analysis in Linear Structural Models  366'''
+
'''11.5 线性结构模型中的因果分析  Causal Analysis in Linear Structural Models  366'''
   −
11.5.1 General Criterion for Parameter Identification (Chapter 5, pp. 149–54)  366
+
11.5.1 参数识别的通用准则(第五章)  General Criterion for Parameter Identification (Chapter 5, pp. 149–54)  366
   −
11.5.2 The Causal Interpretation of Structural Coefficients  366
+
11.5.2 结构系数的因果解释  The Causal Interpretation of Structural Coefficients  366
   −
11.5.3 Defending the Causal Interpretation of SEM (or, SEM Survival Kit)  368
+
11.5.3 为SEM(或者SEM急救包)的因果解释辩护  Defending the Causal Interpretation of SEM (or, SEM Survival Kit)  368
   −
11.5.4 Where Is Economic Modeling Today? – Courting Causes with Heckman  374
+
11.5.4 今天的经济模型在哪?-与赫克曼一起追寻原因  Where Is Economic Modeling Today? – Courting Causes with Heckman  374
   −
11.5.5 External Variation versus Surgery  376
+
11.5.5 外部变化与外科手术  External Variation versus Surgery  376
   −
'''11.6 Decisions and Confounding (Chapter 6)  380'''
+
'''11.6 决策与混杂(第六章)  Decisions and Confounding (Chapter 6)  380'''
   −
11.6.1 Simpson's Paradox and Decision Trees  380
+
11.6.1 辛普森悖论和决策树  Simpson's Paradox and Decision Trees  380
   −
11.6.2 Is Chronological Information Sufficient for Decision Trees?  382
+
11.6.2 时序信息对决策树来说是否充分?  Is Chronological Information Sufficient for Decision Trees?  382
   −
11.6.3 Lindley on Causality, Decision Trees, and Bayesianism  384
+
11.6.3 林德利关于因果性,决策树和贝叶斯主义的理解  Lindley on Causality, Decision Trees, and Bayesianism  384
   −
11.6.4 Why Isn't Confounding a Statistical Concept?  387
+
11.6.4 为什么混杂不是统计学的概念?  Why Isn't Confounding a Statistical Concept?  387
   −
'''11.7 The Calculus of Counterfactuals  389'''
+
'''11.7 计算反事实  The Calculus of Counterfactuals  389'''
   −
11.7.1 Counterfactuals in Linear Systems  389
+
11.7.1 线性系统中的反事实  Counterfactuals in Linear Systems  389
   −
11.7.2 The Meaning of Counterfactuals  391
+
11.7.2 反事实的意义  The Meaning of Counterfactuals  391
   −
11.7.3 d-Separation of Counterfactuals  393
+
11.7.3 反事实中的d-分离  d-Separation of Counterfactuals  393
   −
'''11.8 Instrumental Variables and Noncompliance  395'''
+
'''11.8 工具变量和不依从性  Instrumental Variables and Noncompliance  395'''
   −
11.8.1 Tight Bounds under Noncompliance   395
+
11.8.1 不依从性下的紧边界  Tight Bounds under Noncompliance   395
   −
'''11.9 More on Probabilities of Causation  396'''
+
'''11.9 更多关于因果的概率  More on Probabilities of Causation  396'''
   −
11.9.1 Is  "Guilty with Probability One" Ever Possible?  396
+
11.9.1 “有罪的概率为1”还有可能吗?  Is  "Guilty with Probability One" Ever Possible?  396
   −
11.9.2 Tightening the Bounds on Probabilities of Causation  398
+
11.9.2 收紧因果概率的边界  Tightening the Bounds on Probabilities of Causation  398
134

个编辑