更改

添加6,466字节 、 2022年4月22日 (五) 20:20
无编辑摘要
第66行: 第66行:     
连接具有时间和空间特征。时间特征是指不断修改的活动依赖功效的突触传递,所谓的电峰时间相关突触可塑性。一些研究已经观察到,这种传递的突触功效可以经历短期的增加(称为易化)或减少(抑郁)根据突触前神经元的活动。长时程增强作用或抑制剂诱导突触效能的长期变化,很大程度上取决于兴奋性突触后电位和突触后动作电位发生的相对时间。LTP 是由一系列动作电位引起的,动作电位引起多种生化反应。最终,这些反应导致新受体在突触后神经元的细胞膜上表达,或者通过磷酸化增加现有受体的功效。
 
连接具有时间和空间特征。时间特征是指不断修改的活动依赖功效的突触传递,所谓的电峰时间相关突触可塑性。一些研究已经观察到,这种传递的突触功效可以经历短期的增加(称为易化)或减少(抑郁)根据突触前神经元的活动。长时程增强作用或抑制剂诱导突触效能的长期变化,很大程度上取决于兴奋性突触后电位和突触后动作电位发生的相对时间。LTP 是由一系列动作电位引起的,动作电位引起多种生化反应。最终,这些反应导致新受体在突触后神经元的细胞膜上表达,或者通过磷酸化增加现有受体的功效。
 +
 +
 +
连接表现出时间和空间特征。时间特征是指突触传递的持续修饰的活动依赖的效能,称为峰时依赖的可塑性。多项研究发现,根据突触前神经元的活动,这种传递的突触效能可以经历短期的增加(称为易化)或减少(抑制)。通过长期增强(LTP)或抑制(LTD)诱导突触效能的长期变化,在很大程度上取决于兴奋性突触后电位和突触后动作电位的相对起病时间。LTP是由一系列动作电位引起的各种生化反应引起的。最终,这些反应导致突触后神经元细胞膜上表达新的受体或通过磷酸化增加现有受体的效能。
    
Backpropagating action potentials cannot occur because after an action potential travels down a given segment of the axon, the [[Depolarizing pre-pulse#Hodgkin–Huxley model|m gate]]s on [[voltage-gated sodium channel]]s close, thus blocking any transient opening of the [[Depolarizing pre-pulse#Hodgkin–Huxley model|h gate]] from causing a change in the intracellular sodium ion (Na<sup>+</sup>) concentration, and preventing the generation of an action potential back towards the cell body. In some cells, however, [[neural backpropagation]] does occur through the [[dendrite|dendritic branching]] and may have important effects on synaptic plasticity and computation.
 
Backpropagating action potentials cannot occur because after an action potential travels down a given segment of the axon, the [[Depolarizing pre-pulse#Hodgkin–Huxley model|m gate]]s on [[voltage-gated sodium channel]]s close, thus blocking any transient opening of the [[Depolarizing pre-pulse#Hodgkin–Huxley model|h gate]] from causing a change in the intracellular sodium ion (Na<sup>+</sup>) concentration, and preventing the generation of an action potential back towards the cell body. In some cells, however, [[neural backpropagation]] does occur through the [[dendrite|dendritic branching]] and may have important effects on synaptic plasticity and computation.
第72行: 第75行:     
背向传导动作电位不能发生,因为在动作电位下行到轴突的某一特定部分后,电压门控钠通道上的 m 门关闭,从而阻止 h 门的任何瞬间开启引起细胞内钠离子(Na +)浓度的变化,并阻止动作电位回到细胞体内。然而,在一些细胞中,神经反向传播通过树突的分支发生,并可能对突触可塑性和计算产生重要影响。
 
背向传导动作电位不能发生,因为在动作电位下行到轴突的某一特定部分后,电压门控钠通道上的 m 门关闭,从而阻止 h 门的任何瞬间开启引起细胞内钠离子(Na +)浓度的变化,并阻止动作电位回到细胞体内。然而,在一些细胞中,神经反向传播通过树突的分支发生,并可能对突触可塑性和计算产生重要影响。
 +
 +
 +
反向传播的动作电位是不可能发生的,因为当动作电位沿着轴突的某一特定节段传递之后,电压门控钠通道上的m门关闭,从而阻止h门的任何瞬态打开,以免引起细胞内钠离子浓度的变化。并阻止动作电位的产生回到细胞体内。然而,在某些细胞中,神经反向传播确实通过树突分支发生,并可能对突触可塑性和计算产生重要影响。
    
A neuron in the brain requires a single signal to a [[neuromuscular junction]] to stimulate contraction of the postsynaptic muscle cell. In the spinal cord, however, at least 75 [[afferent nerve|afferent]] neurons are required to produce firing. This picture is further complicated by variation in time constant between neurons, as some cells can experience their [[Excitatory postsynaptic potential|EPSPs]] over a wider period of time than others.
 
A neuron in the brain requires a single signal to a [[neuromuscular junction]] to stimulate contraction of the postsynaptic muscle cell. In the spinal cord, however, at least 75 [[afferent nerve|afferent]] neurons are required to produce firing. This picture is further complicated by variation in time constant between neurons, as some cells can experience their [[Excitatory postsynaptic potential|EPSPs]] over a wider period of time than others.
第78行: 第84行:     
大脑中的一个神经元需要一个单一的信号到一个神经肌肉接点来刺激突触后肌肉细胞的收缩。然而,在脊髓中,至少需要75个传入神经元来产生放电。神经元之间时间常数的变化更加复杂了,因为一些细胞可以比其他细胞经历更长的时间。
 
大脑中的一个神经元需要一个单一的信号到一个神经肌肉接点来刺激突触后肌肉细胞的收缩。然而,在脊髓中,至少需要75个传入神经元来产生放电。神经元之间时间常数的变化更加复杂了,因为一些细胞可以比其他细胞经历更长的时间。
 +
 +
 +
大脑中的神经元需要一个单一的信号到神经肌肉连接刺激突触后肌肉细胞的收缩。然而,在脊髓中,产生放电需要至少75个传入神经元。由于神经元之间的时间常数变化,这幅图变得更加复杂,因为一些细胞可以在比其他细胞更长的一段时间内感受到EPSPs。
    
While in synapses in the [[development of the human brain|developing brain]] synaptic depression has been particularly widely observed it has been speculated that it changes to facilitation in adult brains.
 
While in synapses in the [[development of the human brain|developing brain]] synaptic depression has been particularly widely observed it has been speculated that it changes to facilitation in adult brains.
第84行: 第93行:     
在发育中的大脑突触中,突触抑制已经被广泛观察到,有人推测它在成人大脑中会发生易化变化。
 
在发育中的大脑突触中,突触抑制已经被广泛观察到,有人推测它在成人大脑中会发生易化变化。
 +
 +
虽然在发育状态的脑突触中,突触抑制已经被广泛观察到,但据推测,它在成人大脑中改变为易化。
    
==Circuitry==
 
==Circuitry==
 
[[File:Model of Cerebellar Perceptron.jpg|thumb|Model of a neural circuit in the [[cerebellum]]|链接=Special:FilePath/Model_of_Cerebellar_Perceptron.jpg]]
 
[[File:Model of Cerebellar Perceptron.jpg|thumb|Model of a neural circuit in the [[cerebellum]]|链接=Special:FilePath/Model_of_Cerebellar_Perceptron.jpg]]
 
An example of a neural circuit is the [[trisynaptic circuit]] in the [[hippocampus]]. Another is the [[Papez circuit]] linking the [[hypothalamus]] to the [[limbic lobe]]. There are several neural circuits in the [[cortico-basal ganglia-thalamo-cortical loop]]. These circuits carry information between the cortex, [[basal ganglia]], thalamus, and back to the cortex. The largest structure within the basal ganglia, the [[striatum]], is seen as having its own internal microcircuitry.<ref name="Stocco">{{cite journal |last1=Stocco |first1=Andrea |last2=Lebiere |first2=Christian |last3=Anderson |first3=John R. |title=Conditional Routing of Information to the Cortex: A Model of the Basal Ganglia's Role in Cognitive Coordination |journal=Psychological Review |volume=117 |issue=2 |pages=541–74 |year=2010 |pmid=20438237 |doi=10.1037/a0019077 |pmc=3064519}}</ref>
 
An example of a neural circuit is the [[trisynaptic circuit]] in the [[hippocampus]]. Another is the [[Papez circuit]] linking the [[hypothalamus]] to the [[limbic lobe]]. There are several neural circuits in the [[cortico-basal ganglia-thalamo-cortical loop]]. These circuits carry information between the cortex, [[basal ganglia]], thalamus, and back to the cortex. The largest structure within the basal ganglia, the [[striatum]], is seen as having its own internal microcircuitry.<ref name="Stocco">{{cite journal |last1=Stocco |first1=Andrea |last2=Lebiere |first2=Christian |last3=Anderson |first3=John R. |title=Conditional Routing of Information to the Cortex: A Model of the Basal Ganglia's Role in Cognitive Coordination |journal=Psychological Review |volume=117 |issue=2 |pages=541–74 |year=2010 |pmid=20438237 |doi=10.1037/a0019077 |pmc=3064519}}</ref>
 +
      第93行: 第105行:     
海马体的三突触回路就是神经回路的一个例子。另一个是连接下丘脑和边缘叶的 Papez 电路。在皮质-基底节-丘脑-皮质环中存在多个神经回路。这些神经回路在皮层、基底神经节、丘脑之间传递信息,并回到大脑皮层。在基底神经节中最大的结构,纹状体,被认为有自己的内部微电路。
 
海马体的三突触回路就是神经回路的一个例子。另一个是连接下丘脑和边缘叶的 Papez 电路。在皮质-基底节-丘脑-皮质环中存在多个神经回路。这些神经回路在皮层、基底神经节、丘脑之间传递信息,并回到大脑皮层。在基底神经节中最大的结构,纹状体,被认为有自己的内部微电路。
 +
 +
 +
神经回路的一个例子是海马体中的三突触回路。另一个是连接下丘脑和边缘叶的帕佩兹回路。在皮层-基底神经节-丘脑-皮层环路中有几个神经回路。这些回路在皮层、基底神经节、丘脑之间传递信息,并将信息传回皮层。基底神经节内最大的结构,纹状体,被认为有自己的内部微电路。
    
Neural circuits in the [[spinal cord]] called [[central pattern generator]]s are responsible for controlling motor instructions involved in rhythmic behaviours. Rhythmic behaviours include walking, [[urination]], and [[ejaculation]]. The central pattern generators are made up of different groups of [[spinal interneuron]]s.<ref name="Guertin">{{cite journal |last1=Guertin |first1=PA |title=Central pattern generator for locomotion: anatomical, physiological, and pathophysiological considerations. |journal=Frontiers in Neurology |date=2012 |volume=3 |pages=183 |doi=10.3389/fneur.2012.00183 |pmid=23403923|pmc=3567435 }}</ref>
 
Neural circuits in the [[spinal cord]] called [[central pattern generator]]s are responsible for controlling motor instructions involved in rhythmic behaviours. Rhythmic behaviours include walking, [[urination]], and [[ejaculation]]. The central pattern generators are made up of different groups of [[spinal interneuron]]s.<ref name="Guertin">{{cite journal |last1=Guertin |first1=PA |title=Central pattern generator for locomotion: anatomical, physiological, and pathophysiological considerations. |journal=Frontiers in Neurology |date=2012 |volume=3 |pages=183 |doi=10.3389/fneur.2012.00183 |pmid=23403923|pmc=3567435 }}</ref>
第99行: 第114行:     
脊髓中的神经回路称为中央模式发生器,负责控制涉及节律行为的运动指令。有节奏的行为包括步行、排尿和射精。中枢模式发生器由不同的脊髓中间神经元群组成。
 
脊髓中的神经回路称为中央模式发生器,负责控制涉及节律行为的运动指令。有节奏的行为包括步行、排尿和射精。中枢模式发生器由不同的脊髓中间神经元群组成。
 +
 +
脊髓中被称为中枢模式发生器的神经回路负责控制与节律性行为有关的运动指令。节律性行为包括行走、排尿和射精。中枢模式发生器由不同组的脊髓中间神经元组成。
 +
    
There are four principal types of neural circuits that are responsible for a broad scope of neural functions. These circuits are a '''diverging circuit''', a '''converging circuit''', a '''reverberating circuit''', and a '''parallel after-discharge circuit'''.<ref name="Saladin">{{cite book |last1=Saladin |first1=K |title=Human anatomy |publisher=McGraw-Hill |isbn=9780071222075 |page=364 |edition=3rd}}</ref>
 
There are four principal types of neural circuits that are responsible for a broad scope of neural functions. These circuits are a '''diverging circuit''', a '''converging circuit''', a '''reverberating circuit''', and a '''parallel after-discharge circuit'''.<ref name="Saladin">{{cite book |last1=Saladin |first1=K |title=Human anatomy |publisher=McGraw-Hill |isbn=9780071222075 |page=364 |edition=3rd}}</ref>
第105行: 第123行:     
有四种主要类型的神经回路负责广泛的神经功能。这些电路包括发散电路、会聚电路、混响电路和并联后放电电路。
 
有四种主要类型的神经回路负责广泛的神经功能。这些电路包括发散电路、会聚电路、混响电路和并联后放电电路。
 +
 +
有四种主要类型的神经回路负责广泛的神经功能。这些电路是发散电路、收敛电路、混响电路和并联后放电电路。
    
In a diverging circuit, one neuron synapses with a number of postsynaptic cells. Each of these
 
In a diverging circuit, one neuron synapses with a number of postsynaptic cells. Each of these
第113行: 第133行:     
在发散回路中,一个神经元与许多突触后细胞形成突触。这些神经元中的每一个都可能与更多的神经元形成突触,从而使一个神经元刺激多达数千个细胞成为可能。例如,从单个运动神经元的初始输入可以刺激到成千上万的肌纤维。
 
在发散回路中,一个神经元与许多突触后细胞形成突触。这些神经元中的每一个都可能与更多的神经元形成突触,从而使一个神经元刺激多达数千个细胞成为可能。例如,从单个运动神经元的初始输入可以刺激到成千上万的肌纤维。
 +
 +
在发散回路中,一个神经元与若干突触后细胞形成突触。这些神经元中的每一个都可能与更多的神经元突触,使一个神经元能够刺激成千上万个细胞。一个运动神经元的初始输入可以刺激数千个肌肉纤维,这就是一个例子。
    
In a converging circuit, inputs from many sources are converged into one output, affecting just one neuron or a neuron pool. This type of circuit is exemplified in the [[respiratory center]] of the [[brainstem]], which responds to a number of inputs from different sources by giving out an appropriate breathing pattern.<ref name="Saladin"/>
 
In a converging circuit, inputs from many sources are converged into one output, affecting just one neuron or a neuron pool. This type of circuit is exemplified in the [[respiratory center]] of the [[brainstem]], which responds to a number of inputs from different sources by giving out an appropriate breathing pattern.<ref name="Saladin"/>
第119行: 第141行:     
在会聚电路中,来自多个源的输入收敛到一个输出,只影响一个神经元或一个神经元池。脑干的呼吸中枢就是这种类型的电路的例子,它通过发出适当的呼吸模式来响应来自不同来源的大量输入信号。
 
在会聚电路中,来自多个源的输入收敛到一个输出,只影响一个神经元或一个神经元池。脑干的呼吸中枢就是这种类型的电路的例子,它通过发出适当的呼吸模式来响应来自不同来源的大量输入信号。
 +
 +
 +
在汇聚电路中,来自多个源的输入汇聚成一个输出,只影响一个神经元或神经元池。脑干的呼吸中枢就是这种回路的典型例子,它对来自不同来源的大量输入作出反应,发出适当的呼吸模式。
    
A reverberating circuit produces a repetitive output. In a signalling procedure from one neuron to another in a linear sequence, one of the neurons may send a signal back to initiating neuron.
 
A reverberating circuit produces a repetitive output. In a signalling procedure from one neuron to another in a linear sequence, one of the neurons may send a signal back to initiating neuron.
第127行: 第152行:     
混响电路产生重复输出。在以线性序列从一个神经元到另一个神经元的信号传递过程中,其中一个神经元可以将信号发送回起始神经元。每当第一个神经元触发时,另一个神经元沿着序列触发的方向向下再次将其发送回源。这就重新调节了第一个神经元,也使得传递的路径继续到它的输出。由此产生的重复模式是只有当一个或多个突触失效,或者来自其他来源的抑制信号导致突触停止时才会停止的结果。这种反射回路位于呼吸中枢,向呼吸肌发送信号,引起吸入。当电路被抑制信号中断时,肌肉松弛导致呼气。这种类型的电路可能在癫痫发作中起作用。
 
混响电路产生重复输出。在以线性序列从一个神经元到另一个神经元的信号传递过程中,其中一个神经元可以将信号发送回起始神经元。每当第一个神经元触发时,另一个神经元沿着序列触发的方向向下再次将其发送回源。这就重新调节了第一个神经元,也使得传递的路径继续到它的输出。由此产生的重复模式是只有当一个或多个突触失效,或者来自其他来源的抑制信号导致突触停止时才会停止的结果。这种反射回路位于呼吸中枢,向呼吸肌发送信号,引起吸入。当电路被抑制信号中断时,肌肉松弛导致呼气。这种类型的电路可能在癫痫发作中起作用。
 +
 +
 +
混响电路产生重复的输出。在以线性顺序从一个神经元到另一个神经元的信号传递过程中,其中一个神经元可能会将信号发回初始神经元。每当第一个神经元发出信号时,另一个神经元就会再次发出信号,把信号送回信号源。这将重新刺激第一个神经元,并允许传输路径继续到它的输出。由此产生的重复模式只有在一个或多个突触失效,或来自另一个来源的抑制性馈电导致其停止时才会停止。这种类型的混响电路在呼吸中枢被发现,它向呼吸肌肉发送信号,导致吸入。当回路被抑制信号打断时,肌肉就会放松,导致呼气。这种类型的回路可能在癫痫发作中起作用。
    
In a parallel after-discharge circuit, a neuron inputs to several chains of neurons. Each chain is made up of a different number of neurons but their signals converge onto one output neuron. Each synapse in the circuit acts to delay the signal by about 0.5 msec so that the more synapses there are will produce a longer delay to the output neuron. After the input has stopped, the output will go on firing for some time. This type of circuit does not have a feedback loop as does the reverberating circuit. Continued firing after the stimulus has stopped is called ''after-discharge''. This circuit type is found in the [[reflex arc]]s of certain [[reflex]]es.<ref name="Saladin"/>
 
In a parallel after-discharge circuit, a neuron inputs to several chains of neurons. Each chain is made up of a different number of neurons but their signals converge onto one output neuron. Each synapse in the circuit acts to delay the signal by about 0.5 msec so that the more synapses there are will produce a longer delay to the output neuron. After the input has stopped, the output will go on firing for some time. This type of circuit does not have a feedback loop as does the reverberating circuit. Continued firing after the stimulus has stopped is called ''after-discharge''. This circuit type is found in the [[reflex arc]]s of certain [[reflex]]es.<ref name="Saladin"/>
第132行: 第160行:  
In a parallel after-discharge circuit, a neuron inputs to several chains of neurons. Each chain is made up of a different number of neurons but their signals converge onto one output neuron. Each synapse in the circuit acts to delay the signal by about 0.5 msec so that the more synapses there are will produce a longer delay to the output neuron. After the input has stopped, the output will go on firing for some time. This type of circuit does not have a feedback loop as does the reverberating circuit. Continued firing after the stimulus has stopped is called after-discharge. This circuit type is found in the reflex arcs of certain reflexes.
 
In a parallel after-discharge circuit, a neuron inputs to several chains of neurons. Each chain is made up of a different number of neurons but their signals converge onto one output neuron. Each synapse in the circuit acts to delay the signal by about 0.5 msec so that the more synapses there are will produce a longer delay to the output neuron. After the input has stopped, the output will go on firing for some time. This type of circuit does not have a feedback loop as does the reverberating circuit. Continued firing after the stimulus has stopped is called after-discharge. This circuit type is found in the reflex arcs of certain reflexes.
   −
在并联的后放电回路中,一个神经元输入到几个神经元链。每个链由不同数量的神经元组成,但是它们的信号会聚到一个输出神经元上。电路中的每一个突触都会将信号延迟0.5毫秒左右,因此,突触越多,输出神经元的延迟时间就越长。在输入停止之后,输出将持续一段时间。这种类型的电路不像混响电路那样有反馈回路。刺激停止后的持续放电称为后放电。这种回路类型存在于某些反射的反射弧中。
+
在并联的后放电回路中,一个神经元输入到几个神经元链。每个链由不同数量的神经元组成,但是它们的信号会聚到一个输出神经元上。电路中每一个突触都会将信号延迟0.5毫秒左右,因此,突触越多,输出神经元的延迟时间就越长。在输入停止之后,输出将持续一段时间。这种类型的电路不像混响电路那样有反馈回路。刺激停止后的持续放电称为后放电。这种回路类型存在于某些反射的反射弧中。
 +
 
 +
 
 +
在一个并行的后放电电路中,一个神经元输入到多个神经元链。每个链由不同数量的神经元组成,但它们的信号汇聚到一个输出神经元上。电路中每一个突触都会将信号延迟0.5毫秒左右,因此,突触越多,输出神经元的延迟时间就越长。在输入停止后,输出将继续放电一段时间。这种类型的电路不像混响电路一样有反馈回路。刺激停止后继续放电称为后放电。这种电路类型存在于某些反射的反射弧中。
    
==Study methods==
 
==Study methods==
 
{{See also|Neuropsychology|Cognitive neuropsychology}}
 
{{See also|Neuropsychology|Cognitive neuropsychology}}
 
Different [[neuroimaging]] techniques have been developed to investigate the activity of neural circuits and networks. The use of "brain scanners" or functional neuroimaging to investigate the structure or function of the brain is common, either as simply a way of better assessing brain injury with high-resolution pictures, or by examining the relative activations of different brain areas. Such technologies may include [[functional magnetic resonance imaging]] (fMRI), [[brain positron emission tomography]] (brain PET), and [[computed axial tomography]] (CAT) scans. [[Functional neuroimaging]] uses specific brain imaging technologies to take scans from the brain, usually when a person is doing a particular task, in an attempt to understand how the activation of particular brain areas is related to the task. In functional neuroimaging, especially fMRI, which measures [[hemodynamic response|hemodynamic activity]] (using [[Blood-oxygen-level dependent imaging|BOLD-contrast imaging]]) which is closely linked to neural activity, PET, and [[electroencephalography]] (EEG) is used.
 
Different [[neuroimaging]] techniques have been developed to investigate the activity of neural circuits and networks. The use of "brain scanners" or functional neuroimaging to investigate the structure or function of the brain is common, either as simply a way of better assessing brain injury with high-resolution pictures, or by examining the relative activations of different brain areas. Such technologies may include [[functional magnetic resonance imaging]] (fMRI), [[brain positron emission tomography]] (brain PET), and [[computed axial tomography]] (CAT) scans. [[Functional neuroimaging]] uses specific brain imaging technologies to take scans from the brain, usually when a person is doing a particular task, in an attempt to understand how the activation of particular brain areas is related to the task. In functional neuroimaging, especially fMRI, which measures [[hemodynamic response|hemodynamic activity]] (using [[Blood-oxygen-level dependent imaging|BOLD-contrast imaging]]) which is closely linked to neural activity, PET, and [[electroencephalography]] (EEG) is used.
 +
      第142行: 第174行:     
为了研究神经回路和神经网络的活动,人们开发了不同的神经成像技术。使用“大脑扫描仪”或功能神经影像来研究大脑的结构或功能是很常见的,要么仅仅作为一种通过高分辨率图像更好地评估大脑损伤的方法,要么通过检查不同大脑区域的相对激活。这些技术可能包括功能性磁共振成像扫描(fMRI)、大脑正电子发射计算机断层扫描扫描(PET)和计算机轴向断层扫描(CAT)。功能神经影像使用特定的大脑成像技术对大脑进行扫描,通常是当一个人正在做一个特定的任务时,试图了解特定大脑区域的激活是如何与任务相关的。在功能神经影像,特别是功能性磁共振成像,它测量血液动力学活动(使用 bold 对比成像) ,这是紧密相连的神经活动,PET,和脑电图(EEG)被使用。
 
为了研究神经回路和神经网络的活动,人们开发了不同的神经成像技术。使用“大脑扫描仪”或功能神经影像来研究大脑的结构或功能是很常见的,要么仅仅作为一种通过高分辨率图像更好地评估大脑损伤的方法,要么通过检查不同大脑区域的相对激活。这些技术可能包括功能性磁共振成像扫描(fMRI)、大脑正电子发射计算机断层扫描扫描(PET)和计算机轴向断层扫描(CAT)。功能神经影像使用特定的大脑成像技术对大脑进行扫描,通常是当一个人正在做一个特定的任务时,试图了解特定大脑区域的激活是如何与任务相关的。在功能神经影像,特别是功能性磁共振成像,它测量血液动力学活动(使用 bold 对比成像) ,这是紧密相连的神经活动,PET,和脑电图(EEG)被使用。
 +
 +
 +
不同的神经成像技术已经被开发用来研究神经回路和网络的活动。使用“大脑扫描仪”或功能性神经成像来研究大脑的结构或功能是很常见的,要么是作为一种用高分辨率图片更好地评估大脑损伤的方法,要么是通过检查不同大脑区域的相对激活情况。这些技术可能包括功能性磁共振成像(fMRI)、脑正电子发射断层扫描(脑PET)和计算机轴向断层扫描(CAT)。功能性神经成像技术使用特定的大脑成像技术对大脑进行扫描,通常是当一个人在做一项特定的任务时,试图了解大脑特定区域的激活与任务之间的关系。在功能神经成像中,尤其是功能磁共振成像(fMRI),它测量血液动力学活动(使用BOLD-contrast imaging),这与神经活动密切相关,PET和脑电图(EEG)被使用。
    
[[Connectionism|Connectionist]] models serve as a test platform for different hypotheses of representation, information processing, and signal transmission. Lesioning studies in such models, e.g. [[artificial neural network]]s, where parts of the nodes are deliberately destroyed to see how the network performs, can also yield important insights in the working of several cell assemblies. Similarly, simulations of dysfunctional neurotransmitters in neurological conditions (e.g., dopamine in the basal ganglia of [[Parkinson's disease|Parkinson's]] patients) can yield insights into the underlying mechanisms for patterns of cognitive deficits observed in the particular patient group. Predictions from these models can be tested in patients or via pharmacological manipulations, and these studies can in turn be used to inform the models, making the process iterative.
 
[[Connectionism|Connectionist]] models serve as a test platform for different hypotheses of representation, information processing, and signal transmission. Lesioning studies in such models, e.g. [[artificial neural network]]s, where parts of the nodes are deliberately destroyed to see how the network performs, can also yield important insights in the working of several cell assemblies. Similarly, simulations of dysfunctional neurotransmitters in neurological conditions (e.g., dopamine in the basal ganglia of [[Parkinson's disease|Parkinson's]] patients) can yield insights into the underlying mechanisms for patterns of cognitive deficits observed in the particular patient group. Predictions from these models can be tested in patients or via pharmacological manipulations, and these studies can in turn be used to inform the models, making the process iterative.
第148行: 第183行:     
连接主义模型为不同的表征、信息处理和信号传输假设提供了一个测试平台。在这些模型中进行的损伤研究,例如:。人工神经网络,其中部分节点被故意破坏,以观察网络的表现,也可以产生重要的见解,在工作的几个细胞组装。同样,模拟神经系统疾病中功能失调的神经递质(例如,帕金森病人基底神经节中的多巴胺) ,可以深入了解在特定患者群体中观察到的认知缺陷模式的潜在机制。来自这些模型的预测可以在患者身上或通过药理操作进行测试,而这些研究反过来可以用来告知模型,使过程迭代。
 
连接主义模型为不同的表征、信息处理和信号传输假设提供了一个测试平台。在这些模型中进行的损伤研究,例如:。人工神经网络,其中部分节点被故意破坏,以观察网络的表现,也可以产生重要的见解,在工作的几个细胞组装。同样,模拟神经系统疾病中功能失调的神经递质(例如,帕金森病人基底神经节中的多巴胺) ,可以深入了解在特定患者群体中观察到的认知缺陷模式的潜在机制。来自这些模型的预测可以在患者身上或通过药理操作进行测试,而这些研究反过来可以用来告知模型,使过程迭代。
 +
 +
 +
连接主义者模型是对不同的表征假设、信息处理假设和信号传输假设的测试平台。对这类模型的损伤研究,例如人工神经网络,故意破坏部分节点,以了解网络的运行情况,也可以对几个细胞组装的工作产生重要的见解。同样,模拟神经系统条件下功能失调的神经递质(例如,帕金森氏症患者基底神经节中的多巴胺)可以深入了解在特定患者群体中观察到的认知缺陷模式的潜在机制。从这些模型中得到的预测可以在患者中进行测试,或者通过药物操作进行测试,这些研究反过来可以用来通知模型,使过程迭代。
    
The modern balance between the connectionist approach and the single-cell approach in [[neurobiology]] has been achieved through a lengthy discussion.
 
The modern balance between the connectionist approach and the single-cell approach in [[neurobiology]] has been achieved through a lengthy discussion.
第156行: 第194行:     
神经生物学中的连接主义方法和单细胞方法之间的现代平衡已经通过长时间的讨论达到。1972年,巴洛宣布了单个神经元的革命: “我们的感知是由一个相当少的神经元的活动引起的,这些神经元是从一个非常庞大的主要无声细胞群中挑选出来的。”这种方法是由两年前提出的祖母细胞的想法刺激的。巴洛提出了神经元学说的“五教条”。最近的研究“祖母细胞”和稀疏编码现象发展和修改这些想法。单细胞实验在内侧颞叶(海马和周围皮质)使用颅内电极。测度集中理论(随机分离定理)的现代发展及其在人工神经网络中的应用,为高维大脑中小型神经系统的意想不到的有效性提供了数学背景。
 
神经生物学中的连接主义方法和单细胞方法之间的现代平衡已经通过长时间的讨论达到。1972年,巴洛宣布了单个神经元的革命: “我们的感知是由一个相当少的神经元的活动引起的,这些神经元是从一个非常庞大的主要无声细胞群中挑选出来的。”这种方法是由两年前提出的祖母细胞的想法刺激的。巴洛提出了神经元学说的“五教条”。最近的研究“祖母细胞”和稀疏编码现象发展和修改这些想法。单细胞实验在内侧颞叶(海马和周围皮质)使用颅内电极。测度集中理论(随机分离定理)的现代发展及其在人工神经网络中的应用,为高维大脑中小型神经系统的意想不到的有效性提供了数学背景。
 +
 +
 +
在神经生物学中,连接主义方法和单细胞方法之间的现代平衡已经通过长时间的讨论实现。1972年,巴洛宣布了“单一神经元革命”:“我们的感知是由从大量沉默细胞中选择的少量神经元的活动引起的。”这种方法是受到两年前提出的祖母细胞的启发。巴洛提出了神经元学说的“五大信条”。最近对“祖母细胞”和稀疏编码现象的研究进一步完善了这些观点。单细胞实验使用位于内侧颞叶(海马和周围皮层)的颅内电极。度量集中理论(随机分离定理)的现代发展及其在人工神经网络中的应用为高维大脑中小型神经系统集成的意想不到的有效性提供了数学背景。
    
==Clinical significance==
 
==Clinical significance==
第162行: 第203行:  
Sometimes neural circuitries can become pathological and cause problems such as in Parkinson's disease when the basal ganglia are involved. Problems in the Papez circuit can also give rise to a number of neurodegenerative disorders including Parkinson's.
 
Sometimes neural circuitries can become pathological and cause problems such as in Parkinson's disease when the basal ganglia are involved. Problems in the Papez circuit can also give rise to a number of neurodegenerative disorders including Parkinson's.
   −
临床意义有时候,当基底神经节受累时,神经环路可以变成病理性的,并引起问题,如帕金森病。Papez 神经回路的问题也会引起一些神经退行性疾病,包括帕金森氏症。
+
临床意义
 +
 
 +
有时候,当基底神经节受累时,神经环路会变成病理性的,并引起问题,如帕金森病。帕佩兹回路的问题也会导致包括帕金森氏症在内的一系列神经退行性疾病。
    
==See also==
 
==See also==
104

个编辑