更改

删除2,263字节 、 2022年5月8日 (日) 13:44
无编辑摘要
第1行: 第1行: −
此词条由神经动力学读书会词条梳理志愿者[[用户:Autumnwolfberry|Autumnwolfberry]]翻译审校,未经专家审核,带来阅读不便,请见谅。
+
{{#seo:
 
+
|keywords=神经元,细胞,医学
 
+
|description=是一种可电兴奋的细胞,通过称为突触的专门连接与其他细胞进行交流。
 +
}}
 
'''神经元 neuron'''或'''神经细胞 nerve cell'''是一种可电兴奋的细胞,通过称为[[突触]]的专门连接与其他细胞进行交流。神经元是所有动物神经组织的主要组成部分,除了海绵动物门和扁盘动物门。植物和真菌没有神经细胞。
 
'''神经元 neuron'''或'''神经细胞 nerve cell'''是一种可电兴奋的细胞,通过称为[[突触]]的专门连接与其他细胞进行交流。神经元是所有动物神经组织的主要组成部分,除了海绵动物门和扁盘动物门。植物和真菌没有神经细胞。
   第35行: 第36行:       −
* 细胞体是神经元的主体。由于它含有细胞核,大多数蛋白质合成发生在这里。细胞核的直径可以从3到18微米不等。<ref>{{cite web  |first = Eric H. |last = Chudler | name-list-style = vanc |title = Brain Facts and Figures |url = http://faculty.washington.edu/chudler/facts.html |work = Neuroscience for Kids |access-date = 2009-06-20 }}</ref>
+
* 细胞体是神经元的主体。由于它含有细胞核,大多数蛋白质合成发生在这里。细胞核的直径可以从3到18微米不等。<ref>{{cite web  |first = Eric H. |last = Chudler |title = Brain Facts and Figures |url = http://faculty.washington.edu/chudler/facts.html |work = Neuroscience for Kids |access-date = 2009-06-20 }}</ref>
    
* 神经元的树突是有许多分支的细胞延伸。这种整体形状和结构被比喻为树突树。神经元的大部分输入是通过树突棘发生的。
 
* 神经元的树突是有许多分支的细胞延伸。这种整体形状和结构被比喻为树突树。神经元的大部分输入是通过树突棘发生的。
第52行: 第53行:     
[[File:Complete neuron cell diagram en.svg|thumb|right|典型的有髓的脊椎动物运动神经元示意图]]
 
[[File:Complete neuron cell diagram en.svg|thumb|right|典型的有髓的脊椎动物运动神经元示意图]]
[[File:BN1 Neurology.webm|thumb|神经病学视频]]
      
中枢神经系统中的轴突和树突通常只有约1微米厚,而周围神经系统中的一些轴突和树突则要厚得多。胞体的直径通常约为10-25微米,通常不比其包含的细胞核大多少。人类运动神经元最长的轴突可以超过一米长,从脊柱底部一直延伸到脚趾。
 
中枢神经系统中的轴突和树突通常只有约1微米厚,而周围神经系统中的一些轴突和树突则要厚得多。胞体的直径通常约为10-25微米,通常不比其包含的细胞核大多少。人类运动神经元最长的轴突可以超过一米长,从脊柱底部一直延伸到脚趾。
第60行: 第60行:       −
完全分化的神经元是永久性的有丝分裂后的细胞,<ref>{{cite journal | vauthors = Herrup K, Yang Y | title = Cell cycle regulation in the postmitotic neuron: oxymoron or new biology? | journal = Nature Reviews. Neuroscience | volume = 8 | issue = 5 | pages = 368–78 | date = May 2007 | pmid = 17453017 | doi = 10.1038/nrn2124 | s2cid = 12908713 }}</ref>然而,存在于成人大脑中的干细胞可以在有机体的整个生命过程中再生出功能性神经元(见神经元的生成)。星形胶质细胞是星形的胶质细胞。它们已经被观察到可以凭借其类干细胞的多能性特征而变成神经元。
+
完全分化的神经元是永久性的有丝分裂后的细胞,<ref>{{cite journal | vauthors = Herrup K, Yang Y | title = Cell cycle regulation in the postmitotic neuron: oxymoron or new biology? | journal = Nature Reviews. Neuroscience | volume = 8 | issue = 5 | pages = 368–78 | date = May 2007 | pmid = 17453017 | doi = 10.1038/nrn2124 }}</ref>然而,存在于成人大脑中的干细胞可以在有机体的整个生命过程中再生出功能性神经元(见神经元的生成)。星形胶质细胞是星形的胶质细胞。它们已经被观察到可以凭借其类干细胞的多能性特征而变成神经元。
      第78行: 第78行:       −
神经元的细胞体由称为神经丝的结构蛋白的复杂网状结构支撑,它与神经管(神经元微管)一起被组装成较大的神经纤维。<ref name="Webster">{{cite web |title=Medical Definition of Neurotubules |url=https://www.merriam-webster.com/medical/neurotubules |website=www.merriam-webster.com}}</ref> 一些神经元还含有色素颗粒,如神经黑色素(一种棕黑色的色素,是儿茶酚胺合成的副产品)和脂褐素(一种黄褐色的色素),这两种物质都会随着年龄的增长而积累。<ref>{{cite journal | vauthors = Zecca L, Gallorini M, Schünemann V, Trautwein AX, Gerlach M, Riederer P, Vezzoni P, Tampellini D | title = Iron, neuromelanin and ferritin content in the substantia nigra of normal subjects at different ages: consequences for iron storage and neurodegenerative processes | journal = Journal of Neurochemistry | volume = 76 | issue = 6 | pages = 1766–73 | date = March 2001 | pmid = 11259494 | doi = 10.1046/j.1471-4159.2001.00186.x | s2cid = 31301135 }}</ref><ref>{{cite journal | vauthors = Herrero MT, Hirsch EC, Kastner A, Luquin MR, Javoy-Agid F, Gonzalo LM, Obeso JA, Agid Y | title = Neuromelanin accumulation with age in catecholaminergic neurons from Macaca fascicularis brainstem | journal = Developmental Neuroscience | volume = 15 | issue = 1 | pages = 37–48 | date = 1993 | pmid = 7505739 | doi = 10.1159/000111315 }}</ref><ref>{{cite journal | vauthors = Brunk UT, Terman A | title = Lipofuscin: mechanisms of age-related accumulation and influence on cell function | journal = Free Radical Biology & Medicine | volume = 33 | issue = 5 | pages = 611–9 | date = September 2002 | pmid = 12208347 | doi = 10.1016/s0891-5849(02)00959-0 }}</ref> 对神经元功能很重要的其他结构蛋白是肌动蛋白和微管的管蛋白。第三类β-管蛋白几乎只在神经元中发现。在神经元发育过程中,肌动蛋白主要存在于轴突和树突的顶端。在那里,肌动蛋白的动态可以通过与微管的相互作用而被调节。<ref>{{cite journal | vauthors = Zhao B, Meka DP, Scharrenberg R, König T, Schwanke B, Kobler O, Windhorst S, Kreutz MR, Mikhaylova M, Calderon de Anda F | title = Microtubules Modulate F-actin Dynamics during Neuronal Polarization | journal = Scientific Reports | volume = 7 | issue = 1 | pages = 9583 | date = August 2017 | pmid = 28851982 | pmc = 5575062 | doi = 10.1038/s41598-017-09832-8 | bibcode = 2017NatSR...7.9583Z }}</ref>  
+
神经元的细胞体由称为神经丝的结构蛋白的复杂网状结构支撑,它与神经管(神经元微管)一起被组装成较大的神经纤维。<ref name="Webster">{{cite web |title=Medical Definition of Neurotubules |url=https://www.merriam-webster.com/medical/neurotubules |website=www.merriam-webster.com}}</ref> 一些神经元还含有色素颗粒,如神经黑色素(一种棕黑色的色素,是儿茶酚胺合成的副产品)和脂褐素(一种黄褐色的色素),这两种物质都会随着年龄的增长而积累。<ref>{{cite journal | vauthors = Zecca L, Gallorini M, Schünemann V, Trautwein AX, Gerlach M, Riederer P, Vezzoni P, Tampellini D | title = Iron, neuromelanin and ferritin content in the substantia nigra of normal subjects at different ages: consequences for iron storage and neurodegenerative processes | journal = Journal of Neurochemistry | volume = 76 | issue = 6 | pages = 1766–73 | date = March 2001 | pmid = 11259494 | doi = 10.1046/j.1471-4159.2001.00186.x }}</ref><ref>{{cite journal | vauthors = Herrero MT, Hirsch EC, Kastner A, Luquin MR, Javoy-Agid F, Gonzalo LM, Obeso JA, Agid Y | title = Neuromelanin accumulation with age in catecholaminergic neurons from Macaca fascicularis brainstem | journal = Developmental Neuroscience | volume = 15 | issue = 1 | pages = 37–48 | date = 1993 | pmid = 7505739 | doi = 10.1159/000111315 }}</ref><ref>{{cite journal | vauthors = Brunk UT, Terman A | title = Lipofuscin: mechanisms of age-related accumulation and influence on cell function | journal = Free Radical Biology & Medicine | volume = 33 | issue = 5 | pages = 611–9 | date = September 2002 | pmid = 12208347 | doi = 10.1016/s0891-5849(02)00959-0 }}</ref> 对神经元功能很重要的其他结构蛋白是肌动蛋白和微管的管蛋白。第三类β-管蛋白几乎只在神经元中发现。在神经元发育过程中,肌动蛋白主要存在于轴突和树突的顶端。在那里,肌动蛋白的动态可以通过与微管的相互作用而被调节。<ref>{{cite journal | vauthors = Zhao B, Meka DP, Scharrenberg R, König T, Schwanke B, Kobler O, Windhorst S, Kreutz MR, Mikhaylova M, Calderon de Anda F | title = Microtubules Modulate F-actin Dynamics during Neuronal Polarization | journal = Scientific Reports | volume = 7 | issue = 1 | pages = 9583 | date = August 2017 | pmid = 28851982 | pmc = 5575062 | doi = 10.1038/s41598-017-09832-8 | bibcode = 2017NatSR...7.9583Z }}</ref>  
      第144行: 第144行:       −
兴奋性和抑制性神经递质之间的区别不是绝对的。相反,它取决于突触后神经元上存在的化学受体的类别。原则上,一个神经元,释放一种神经递质,可以对某些目标产生兴奋作用,对其他目标产生抑制作用,对其他目标仍有调节作用。例如,视网膜上的感光细胞在没有光的情况下不断释放神经递质谷氨酸。像大多数神经元一样,所谓的关闭双极细胞被释放的谷氨酸所激发。然而,被称为ON双极细胞的邻近目标神经元反而受到谷氨酸的抑制,因为它们缺乏典型的离子型谷氨酸受体,而是表达一类抑制性的代谢型谷氨酸受体。<ref>{{cite journal | vauthors = Gerber U | title = Metabotropic glutamate receptors in vertebrate retina | journal = Documenta Ophthalmologica. Advances in Ophthalmology | volume = 106 | issue = 1 | pages = 83–7 | date = January 2003 | pmid = 12675489 | doi = 10.1023/A:1022477203420 | s2cid = 22296630 }}</ref>当有光时,光感受器停止释放谷氨酸,这解除了ON双极细胞的抑制,激活了它们;这同时消除了OFF双极细胞的兴奋,使它们沉默。
+
兴奋性和抑制性神经递质之间的区别不是绝对的。相反,它取决于突触后神经元上存在的化学受体的类别。原则上,一个神经元,释放一种神经递质,可以对某些目标产生兴奋作用,对其他目标产生抑制作用,对其他目标仍有调节作用。例如,视网膜上的感光细胞在没有光的情况下不断释放神经递质谷氨酸。像大多数神经元一样,所谓的关闭双极细胞被释放的谷氨酸所激发。然而,被称为ON双极细胞的邻近目标神经元反而受到谷氨酸的抑制,因为它们缺乏典型的离子型谷氨酸受体,而是表达一类抑制性的代谢型谷氨酸受体。<ref>{{cite journal | vauthors = Gerber U | title = Metabotropic glutamate receptors in vertebrate retina | journal = Documenta Ophthalmologica. Advances in Ophthalmology | volume = 106 | issue = 1 | pages = 83–7 | date = January 2003 | pmid = 12675489 | doi = 10.1023/A:1022477203420 }}</ref>当有光时,光感受器停止释放谷氨酸,这解除了ON双极细胞的抑制,激活了它们;这同时消除了OFF双极细胞的兴奋,使它们沉默。
      第161行: 第161行:     
====神经递质 ====
 
====神经递质 ====
   
[[File:Neurotransmitters.jpg|thumb|含有神经递质的突触小泡。]]
 
[[File:Neurotransmitters.jpg|thumb|含有神经递质的突触小泡。]]
 
神经递质是由一个神经元传递给另一个神经元或肌肉细胞或腺体细胞的化学信使。
 
神经递质是由一个神经元传递给另一个神经元或肌肉细胞或腺体细胞的化学信使。
  −
*Cholinergic neurons – acetylcholine. [[Acetylcholine]] is released from presynaptic neurons into the synaptic cleft. It acts as a [[ligand]] for both ligand-gated ion channels and [[Metabotropic receptor|metabotropic]] (GPCRs) [[Muscarinic acetylcholine receptor|muscarinic receptors]]. [[Nicotinic receptors]] are pentameric ligand-gated ion channels composed of alpha and beta subunits that bind [[nicotine]]. Ligand binding opens the channel causing influx of [[Sodium|Na<sup>+</sup>]] depolarization and increases the probability of presynaptic neurotransmitter release. Acetylcholine is synthesized from [[choline]] and [[acetyl coenzyme A]].
  −
*Adrenergic neurons – noradrenaline. [[Noradrenaline]] (norepinephrine) is released from most [[postganglionic]] neurons in the [[sympathetic nervous system]] onto two sets of GPCRs: [[Adrenergic receptor|alpha adrenoceptor]]s and [[beta adrenoceptor]]s. Noradrenaline is one of the three common [[catecholamine]] neurotransmitter, and the most prevalent of them in the [[peripheral nervous system]]; as with other catecholamines, it is synthesised from [[tyrosine]].
  −
*GABAergic neurons – [[gamma aminobutyric acid]]. GABA is one of two neuroinhibitors in the [[central nervous system]] (CNS), along with glycine. GABA has a homologous function to [[Acetylcholine|ACh]], gating anion channels that allow [[Chlorine|Cl<sup>−</sup>]] ions to enter the post synaptic neuron. Cl<sup>−</sup> causes hyperpolarization within the neuron, decreasing the probability of an action potential firing as the voltage becomes more negative (for an action potential to fire, a positive voltage threshold must be reached). GABA is synthesized from glutamate neurotransmitters by the enzyme [[glutamate decarboxylase]].
  −
*Glutamatergic neurons – glutamate. [[Glutamate]] is one of two primary excitatory amino acid neurotransmitters, along with [[Aspartic acid|aspartate]]. Glutamate receptors are one of four categories, three of which are ligand-gated ion channels and one of which is a [[G protein|G-protein]] coupled receptor (often referred to as GPCR).
  −
   
*胆碱能神经元--乙酰胆碱。乙酰胆碱从突触前神经元释放到突触间隙中。它是配体门控离子通道和代谢型(GPCRs:G蛋白耦联受体)毒蕈碱受体的配体。烟碱受体是由结合了尼古丁的α和β亚基组成的五聚体配体门控离子通道。配体结合后打开通道,造成Na+的流入,使其去极化,并增加突触前神经递质释放的概率。乙酰胆碱是由胆碱和乙酰辅酶A合成的。
 
*胆碱能神经元--乙酰胆碱。乙酰胆碱从突触前神经元释放到突触间隙中。它是配体门控离子通道和代谢型(GPCRs:G蛋白耦联受体)毒蕈碱受体的配体。烟碱受体是由结合了尼古丁的α和β亚基组成的五聚体配体门控离子通道。配体结合后打开通道,造成Na+的流入,使其去极化,并增加突触前神经递质释放的概率。乙酰胆碱是由胆碱和乙酰辅酶A合成的。
   第211行: 第204行:  
[[File:Axon Propagation.svg|thumb|563x563px|An annotated diagram of the stages of an action potential propagating down an axon including the role of ion concentration and pump and channel proteins.一个动作电位沿轴突传播的阶段的注释图,包括离子浓度和泵及通道蛋白的作用。]]
 
[[File:Axon Propagation.svg|thumb|563x563px|An annotated diagram of the stages of an action potential propagating down an axon including the role of ion concentration and pump and channel proteins.一个动作电位沿轴突传播的阶段的注释图,包括离子浓度和泵及通道蛋白的作用。]]
   −
人脑有大约8.6 x 10<sup>10</sup>(86亿)个神经元。<ref>{{ cite journal | vauthors = Herculano-Houzel S | title = The human brain in numbers: a linearly scaled-up primate brain | journal = Frontiers in Human Neuroscience | volume = 3 | pages = 31 | date = November 2009 | pmid = 19915731 | doi = 10.3389/neuro.09.031.2009 | pmc = 2776484 | doi-access = free }}</ref>每个神经元平均有7000个与其他神经元的突触连接。据估计,一个三岁孩子的大脑大约有1015个突触(1万亿)。这个数字随着年龄的增长而下降,到成年后趋于稳定。对成年人的估计有所不同,从10<sup>14</sup> 到 5 x 10<sup>14</sup>个突触(100到500万亿)不等。<ref>{{cite journal | vauthors = Drachman DA | title = Do we have brain to spare? | journal = Neurology | volume = 64 | issue = 12 | pages = 2004–5 | date = June 2005 | pmid = 15985565 | doi = 10.1212/01.WNL.0000166914.38327.BB | s2cid = 38482114 }}</ref>
+
人脑有大约8.6 x 10<sup>10</sup>(86亿)个神经元。<ref>{{ cite journal | vauthors = Herculano-Houzel S | title = The human brain in numbers: a linearly scaled-up primate brain | journal = Frontiers in Human Neuroscience | volume = 3 | pages = 31 | date = November 2009 | pmid = 19915731 | doi = 10.3389/neuro.09.031.2009 | pmc = 2776484 | doi-access = free }}</ref>每个神经元平均有7000个与其他神经元的突触连接。据估计,一个三岁孩子的大脑大约有1015个突触(1万亿)。这个数字随着年龄的增长而下降,到成年后趋于稳定。对成年人的估计有所不同,从10<sup>14</sup> 到 5 x 10<sup>14</sup>个突触(100到500万亿)不等。<ref>{{cite journal | vauthors = Drachman DA | title = Do we have brain to spare? | journal = Neurology | volume = 64 | issue = 12 | pages = 2004–5 | date = June 2005 | pmid = 15985565 | doi = 10.1212/01.WNL.0000166914.38327.BB }}</ref>
      第226行: 第219行:     
==动作电位的传播机制==
 
==动作电位的传播机制==
1937年,约翰-扎卡里-杨 John Zachary Young提出,乌贼巨大轴突可用于研究神经元的电特性。<ref>{{cite web |first = Eric H. |last = Chudler | name-list-style = vanc  |title = Milestones in Neuroscience Research |url = http://faculty.washington.edu/chudler/hist.html |work = Neuroscience for Kids |access-date = 2009-06-20}}</ref>它比人类神经元大,但与人类神经元相似,因此更容易研究。通过将电极插入乌贼巨轴突,对膜电位进行了精确测量。
+
1937年,约翰-扎卡里-杨 John Zachary Young提出,乌贼巨大轴突可用于研究神经元的电特性。<ref>{{cite web |first = Eric H. |last = Chudler |title = Milestones in Neuroscience Research |url = http://faculty.washington.edu/chudler/hist.html |work = Neuroscience for Kids |access-date = 2009-06-20}}</ref>它比人类神经元大,但与人类神经元相似,因此更容易研究。通过将电极插入乌贼巨轴突,对膜电位进行了精确测量。
      第232行: 第225行:       −
有几种刺激可以激活神经元,导致电活动,包括压力、拉伸、化学传导物和细胞膜上的电势变化。<ref>{{cite web|first1=Joe |last1=Patlak |first2=Ray |last2=Gibbons | name-list-style = vanc |title=Electrical Activity of Nerves |url=http://physioweb.med.uvm.edu/cardiacep/EP/nervecells.htm |work=Action Potentials in Nerve Cells |date=2000-11-01 |access-date=2009-06-20 |url-status=dead |archive-url=https://web.archive.org/web/20090827220335/http://physioweb.med.uvm.edu/cardiacep/EP/nervecells.htm |archive-date=August 27, 2009 }}</ref>刺激导致细胞膜内特定的离子通道打开,使得离子流经细胞膜,改变膜电位。神经元必须保持界定其神经元类型的特定电特性。<ref name="Harris-Warrick">{{cite journal |last1=Harris-Warrick |first1=RM |title=Neuromodulation and flexibility in Central Pattern Generator networks. |journal=Current Opinion in Neurobiology |date=October 2011 |volume=21 |issue=5 |pages=685–92 |doi=10.1016/j.conb.2011.05.011 |pmid=21646013|pmc=3171584 }}</ref>
+
有几种刺激可以激活神经元,导致电活动,包括压力、拉伸、化学传导物和细胞膜上的电势变化。<ref>{{cite web|first1=Joe |last1=Patlak |first2=Ray |last2=Gibbons |title=Electrical Activity of Nerves |url=http://physioweb.med.uvm.edu/cardiacep/EP/nervecells.htm |work=Action Potentials in Nerve Cells |date=2000-11-01 |access-date=2009-06-20 |url-status=dead |archive-url=https://web.archive.org/web/20090827220335/http://physioweb.med.uvm.edu/cardiacep/EP/nervecells.htm |archive-date=August 27, 2009 }}</ref>刺激导致细胞膜内特定的离子通道打开,使得离子流经细胞膜,改变膜电位。神经元必须保持界定其神经元类型的特定电特性。<ref name="Harris-Warrick">{{cite journal |last1=Harris-Warrick |first1=RM |title=Neuromodulation and flexibility in Central Pattern Generator networks. |journal=Current Opinion in Neurobiology |date=October 2011 |volume=21 |issue=5 |pages=685–92 |doi=10.1016/j.conb.2011.05.011 |pmid=21646013|pmc=3171584 }}</ref>
      第242行: 第235行:     
==神经编码==
 
==神经编码==
神经编码关注的是感觉和其他信息如何在大脑中被神经元所表达。研究神经编码的主要目的是描述刺激与单个或集合神经元反应之间的关系,以及集合内神经元电活动之间的关系。<ref name="Brown">{{cite journal | vauthors = Brown EN, Kass RE, Mitra PP | title = Multiple neural spike train data analysis: state-of-the-art and future challenges | journal = Nature Neuroscience | volume = 7 | issue = 5 | pages = 456–61 | date = May 2004 | pmid = 15114358 | doi = 10.1038/nn1228 | s2cid = 562815 }}</ref>人们认为,神经元既可以编码数字信息,也可以编码模拟信息。<ref>{{cite book | vauthors = Thorpe SJ |chapter=Spike arrival times: A highly efficient coding scheme for neural networks |chapter-url= http://pop.cerco.ups-tlse.fr/fr_vers/documents/thorpe_sj_90_91.pdf |pages= 91–94 |title=Parallel processing in neural systems and computers| veditors = Eckmiller R, Hartmann G, Hauske G |date=1990|publisher=North-Holland|isbn=9780444883902 |url={{google books |plainurl=y |id=boBqAAAAMAAJ}}|language=en|archive-url=https://web.archive.org/web/20120215151304/http://pop.cerco.ups-tlse.fr/fr_vers/documents/thorpe_sj_90_91.pdf|archive-date=2012-02-15}}</ref>
+
神经编码关注的是感觉和其他信息如何在大脑中被神经元所表达。研究神经编码的主要目的是描述刺激与单个或集合神经元反应之间的关系,以及集合内神经元电活动之间的关系。<ref name="Brown">{{cite journal | vauthors = Brown EN, Kass RE, Mitra PP | title = Multiple neural spike train data analysis: state-of-the-art and future challenges | journal = Nature Neuroscience | volume = 7 | issue = 5 | pages = 456–61 | date = May 2004 | pmid = 15114358 | doi = 10.1038/nn1228 }}</ref>人们认为,神经元既可以编码数字信息,也可以编码模拟信息。<ref>{{cite book | vauthors = Thorpe SJ |chapter=Spike arrival times: A highly efficient coding scheme for neural networks |chapter-url= http://pop.cerco.ups-tlse.fr/fr_vers/documents/thorpe_sj_90_91.pdf |pages= 91–94 |title=Parallel processing in neural systems and computers| veditors = Eckmiller R, Hartmann G, Hauske G |date=1990|publisher=North-Holland|isbn=9780444883902 |url={{google books |plainurl=y |id=boBqAAAAMAAJ}}|language=en|archive-url=https://web.archive.org/web/20120215151304/http://pop.cerco.ups-tlse.fr/fr_vers/documents/thorpe_sj_90_91.pdf|archive-date=2012-02-15}}</ref>
      第255行: 第248行:       −
帕西尼氏小体就是这样一个结构。它有像洋葱一样的同心层,围绕着轴突终端形成。当施加压力使小体变形时,机械刺激被转移到轴突上,轴突就会放电。如果压力是稳定的,刺激就会结束;因此,通常这些神经元在最初的变形过程中会有短暂的去极化反应,而当压力被移除时又会有短暂的去极化反应,从而使小体再次改变形状。其他类型的适应对扩展其他一些神经元的功能很重要。<ref>{{cite book | last1 = Eckert | first1 = Roger | last2 = Randall | first2 = David | name-list-style = vanc | title = Animal physiology: mechanisms and adaptations | year = 1983 | publisher = W.H. Freeman | location = San Francisco | isbn = 978-0-7167-1423-1 | page = [https://archive.org/details/animalphysiology0000ecke/page/239 239] | url = https://archive.org/details/animalphysiology0000ecke/page/239 }}</ref>
+
帕西尼氏小体就是这样一个结构。它有像洋葱一样的同心层,围绕着轴突终端形成。当施加压力使小体变形时,机械刺激被转移到轴突上,轴突就会放电。如果压力是稳定的,刺激就会结束;因此,通常这些神经元在最初的变形过程中会有短暂的去极化反应,而当压力被移除时又会有短暂的去极化反应,从而使小体再次改变形状。其他类型的适应对扩展其他一些神经元的功能很重要。<ref>{{cite book | last1 = Eckert | first1 = Roger | last2 = Randall | first2 = David | title = Animal physiology: mechanisms and adaptations | year = 1983 | publisher = W.H. Freeman | location = San Francisco | isbn = 978-0-7167-1423-1 | page = [https://archive.org/details/animalphysiology0000ecke/page/239 239] | url = https://archive.org/details/animalphysiology0000ecke/page/239 }}</ref>
      第270行: 第263行:  
[[File:Purkinje cell by Cajal.png|thumb|Santiago Ramón y Cajal绘制的小脑皮层中的浦肯野细胞图,展示了高尔基染色法揭示精细细节的能力。]]
 
[[File:Purkinje cell by Cajal.png|thumb|Santiago Ramón y Cajal绘制的小脑皮层中的浦肯野细胞图,展示了高尔基染色法揭示精细细节的能力。]]
   −
神经元作为神经系统主要功能单位的地位,在19世纪末通过西班牙解剖学家圣地亚哥-拉蒙-卡亚尔 Santiago Ramón y Cajal的作品首次得到承认。<ref name="López-Muñoz">{{cite journal | vauthors = López-Muñoz F, Boya J, Alamo C | title = Neuron theory, the cornerstone of neuroscience, on the centenary of the Nobel Prize award to Santiago Ramón y Cajal | journal = Brain Research Bulletin | volume = 70 | issue = 4–6 | pages = 391–405 | date = October 2006 | pmid = 17027775 | doi = 10.1016/j.brainresbull.2006.07.010 | s2cid = 11273256 }}</ref>
+
神经元作为神经系统主要功能单位的地位,在19世纪末通过西班牙解剖学家圣地亚哥-拉蒙-卡亚尔 Santiago Ramón y Cajal的作品首次得到承认。<ref name="López-Muñoz">{{cite journal | vauthors = López-Muñoz F, Boya J, Alamo C | title = Neuron theory, the cornerstone of neuroscience, on the centenary of the Nobel Prize award to Santiago Ramón y Cajal | journal = Brain Research Bulletin | volume = 70 | issue = 4–6 | pages = 391–405 | date = October 2006 | pmid = 17027775 | doi = 10.1016/j.brainresbull.2006.07.010 | }}</ref>
      第281行: 第274行:       −
银浸渍染色法是神经解剖学研究的有效方法,因为——由于未知的原因——它只会对组织中的一小部分细胞进行染色,暴露出单个神经元的完整微观结构,而不会与其他细胞有太多的重叠。<ref name="Grant">{{cite journal | vauthors = Grant G | title = How the 1906 Nobel Prize in Physiology or Medicine was shared between Golgi and Cajal | journal = Brain Research Reviews | volume = 55 | issue = 2 | pages = 490–8 | date = October 2007 | pmid = 17306375 | doi = 10.1016/j.brainresrev.2006.11.004 | s2cid = 24331507 }}</ref>
+
银浸渍染色法是神经解剖学研究的有效方法,因为——由于未知的原因——它只会对组织中的一小部分细胞进行染色,暴露出单个神经元的完整微观结构,而不会与其他细胞有太多的重叠。<ref name="Grant">{{cite journal | vauthors = Grant G | title = How the 1906 Nobel Prize in Physiology or Medicine was shared between Golgi and Cajal | journal = Brain Research Reviews | volume = 55 | issue = 2 | pages = 490–8 | date = October 2007 | pmid = 17306375 | doi = 10.1016/j.brainresrev.2006.11.004 }}</ref>
      第290行: 第283行:       −
后来的发现使这一学说得到了完善。例如,非神经元的胶质细胞在信息处理中起着至关重要的作用。<ref>{{cite journal | vauthors = Witcher MR, Kirov SA, Harris KM | title = Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus | journal = Glia | volume = 55 | issue = 1 | pages = 13–23 | date = January 2007 | pmid = 17001633 | doi = 10.1002/glia.20415 | citeseerx = 10.1.1.598.7002 | s2cid = 10664003 }}</ref>另外,电突触比以前认为得更常见,<ref>{{cite journal | vauthors = Connors BW, Long MA | title = Electrical synapses in the mammalian brain | journal = Annual Review of Neuroscience | volume = 27 | issue = 1 | pages = 393–418 | year = 2004 | pmid = 15217338 | doi = 10.1146/annurev.neuro.26.041002.131128  | url = https://zenodo.org/record/894386 }}</ref>包括神经元之间的直接胞质连接。事实上,神经元可以形成更紧密的耦合:乌贼的巨型轴突来自于多个轴突的融合。<ref>{{cite journal | vauthors = Guillery RW | title = Observations of synaptic structures: origins of the neuron doctrine and its current status | journal = Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences | volume = 360 | issue = 1458 | pages = 1281–307 | date = June 2005 | pmid = 16147523 | pmc = 1569502 | doi = 10.1098/rstb.2003.1459 }}</ref>
+
后来的发现使这一学说得到了完善。例如,非神经元的胶质细胞在信息处理中起着至关重要的作用。<ref>{{cite journal | vauthors = Witcher MR, Kirov SA, Harris KM | title = Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus | journal = Glia | volume = 55 | issue = 1 | pages = 13–23 | date = January 2007 | pmid = 17001633 | doi = 10.1002/glia.20415 | citeseerx = 10.1.1.598.7002}}</ref>另外,电突触比以前认为得更常见,<ref>{{cite journal | vauthors = Connors BW, Long MA | title = Electrical synapses in the mammalian brain | journal = Annual Review of Neuroscience | volume = 27 | issue = 1 | pages = 393–418 | year = 2004 | pmid = 15217338 | doi = 10.1146/annurev.neuro.26.041002.131128  | url = https://zenodo.org/record/894386 }}</ref>包括神经元之间的直接胞质连接。事实上,神经元可以形成更紧密的耦合:乌贼的巨型轴突来自于多个轴突的融合。<ref>{{cite journal | vauthors = Guillery RW | title = Observations of synaptic structures: origins of the neuron doctrine and its current status | journal = Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences | volume = 360 | issue = 1458 | pages = 1281–307 | date = June 2005 | pmid = 16147523 | pmc = 1569502 | doi = 10.1098/rstb.2003.1459 }}</ref>
      第309行: 第302行:       −
阿尔茨海默病 Alzheimer's disease(AD),是一种神经退行性疾病,其特点是认知能力逐渐退化,伴随着日常生活活动能力下降和神经精神症状或行为变化。<ref name="nihstages">{{cite web|title=About Alzheimer's Disease: Symptoms|url=http://www.nia.nih.gov/alzheimers/topics/symptoms|publisher=National Institute on Aging|access-date=28 December 2011|url-status=live|archive-url=https://web.archive.org/web/20120115201854/http://www.nia.nih.gov/alzheimers/topics/symptoms|archive-date=15 January 2012|df=dmy-all}}</ref>最突出的早期症状是短期记忆的丧失(失忆),通常表现为轻微的遗忘,随着病情的发展,遗忘的程度会逐渐加重,但老的记忆却记忆得相对清楚。随着病情的发展,认知(智力)损害扩展到语言(失语)、熟练动作(失用)和识别(失认)等领域,决策和计划等功能也会受到损害。<ref name="BMJ2009">{{cite journal | vauthors = Burns A, Iliffe S | title = Alzheimer's disease | journal = BMJ | volume = 338 | pages = b158 | date = February 2009 | pmid = 19196745 | doi = 10.1136/bmj.b158  | s2cid = 8570146 | url = https://semanticscholar.org/paper/0fccf0616b35e3bb427c3783a44777e4dc228713 }}</ref><ref name=NEJM2010>{{cite journal | vauthors = Querfurth HW, LaFerla FM | title = Alzheimer's disease | journal = The New England Journal of Medicine | volume = 362 | issue = 4 | pages = 329–44 | date = January 2010 | pmid = 20107219 | doi = 10.1056/NEJMra0909142 | s2cid = 205115756 | url = https://semanticscholar.org/paper/7bc445c5ddf7869b9f71a5390ff9e9e992533ee3 }}</ref>
+
阿尔茨海默病 Alzheimer's disease(AD),是一种神经退行性疾病,其特点是认知能力逐渐退化,伴随着日常生活活动能力下降和神经精神症状或行为变化。<ref name="nihstages">{{cite web|title=About Alzheimer's Disease: Symptoms|url=http://www.nia.nih.gov/alzheimers/topics/symptoms|publisher=National Institute on Aging|access-date=28 December 2011|url-status=live|archive-url=https://web.archive.org/web/20120115201854/http://www.nia.nih.gov/alzheimers/topics/symptoms|archive-date=15 January 2012|df=dmy-all}}</ref>最突出的早期症状是短期记忆的丧失(失忆),通常表现为轻微的遗忘,随着病情的发展,遗忘的程度会逐渐加重,但老的记忆却记忆得相对清楚。随着病情的发展,认知(智力)损害扩展到语言(失语)、熟练动作(失用)和识别(失认)等领域,决策和计划等功能也会受到损害。<ref name="BMJ2009">{{cite journal | vauthors = Burns A, Iliffe S | title = Alzheimer's disease | journal = BMJ | volume = 338 | pages = b158 | date = February 2009 | pmid = 19196745 | doi = 10.1136/bmj.b158  | url = https://semanticscholar.org/paper/0fccf0616b35e3bb427c3783a44777e4dc228713 }}</ref><ref name=NEJM2010>{{cite journal | vauthors = Querfurth HW, LaFerla FM | title = Alzheimer's disease | journal = The New England Journal of Medicine | volume = 362 | issue = 4 | pages = 329–44 | date = January 2010 | pmid = 20107219 | doi = 10.1056/NEJMra0909142 |url = https://semanticscholar.org/paper/7bc445c5ddf7869b9f71a5390ff9e9e992533ee3 }}</ref>
      第373行: 第366行:  
== 进一步阅读 ==
 
== 进一步阅读 ==
 
{{refbegin}}
 
{{refbegin}}
* {{cite journal | vauthors = Bullock TH, Bennett MV, Johnston D, Josephson R, Marder E, Fields RD | title = Neuroscience. The neuron doctrine, redux | journal = Science | volume = 310 | issue = 5749 | pages = 791–3 | date = November 2005 | pmid = 16272104 | doi = 10.1126/science.1114394 | s2cid = 170670241 }}
+
* {{cite journal | vauthors = Bullock TH, Bennett MV, Johnston D, Josephson R, Marder E, Fields RD | title = Neuroscience. The neuron doctrine, redux | journal = Science | volume = 310 | issue = 5749 | pages = 791–3 | date = November 2005 | pmid = 16272104 | doi = 10.1126/science.1114394 }}
 
* {{Cite book | vauthors = Kandel ER, Schwartz JH, Jessell TM |year=2000 |title=Principles of Neural Science |edition=4th |publisher=McGraw-Hill |location=New York |isbn=0-8385-7701-6 }}
 
* {{Cite book | vauthors = Kandel ER, Schwartz JH, Jessell TM |year=2000 |title=Principles of Neural Science |edition=4th |publisher=McGraw-Hill |location=New York |isbn=0-8385-7701-6 }}
 
* {{Cite book | vauthors = Peters A, Palay SL, Webster HS |year=1991 |title=The Fine Structure of the Nervous System |edition=3rd |location=New York |publisher=Oxford University Press |isbn=0-19-506571-9 }}
 
* {{Cite book | vauthors = Peters A, Palay SL, Webster HS |year=1991 |title=The Fine Structure of the Nervous System |edition=3rd |location=New York |publisher=Oxford University Press |isbn=0-19-506571-9 }}
第394行: 第387行:  
* [https://web.archive.org/web/20111008142032/http://www.immunoportal.com/modules.php?name=gallery2&g2_view=keyalbum.KeywordAlbum&g2_keyword=Neuron 免疫组织化学图像库:神经元]
 
* [https://web.archive.org/web/20111008142032/http://www.immunoportal.com/modules.php?name=gallery2&g2_view=keyalbum.KeywordAlbum&g2_keyword=Neuron 免疫组织化学图像库:神经元]
 
* [https://www.khanacademy.org/science/biology/human-biology/neuron-nervous-system/v/anatomy-of-a-neuron Khan学院:神经元的解剖]
 
* [https://www.khanacademy.org/science/biology/human-biology/neuron-nervous-system/v/anatomy-of-a-neuron Khan学院:神经元的解剖]
* [http://www.histology-world.com/photoalbum/thumbnails.php?album=96  
+
* [http://www.histology-world.com/photoalbum/thumbnails.php?album=96 神经元图像]
Neuron images
+
 
神经元图像]
+
 
 +
----
 +
本中文词条由[[用户:Autumnwolfberry|Autumnwolfberry]]翻译,[[用户:薄荷|薄荷]]编辑,如有问题,欢迎在讨论页面留言。
          +
'''本词条内容源自wikipedia及公开资料,遵守 CC3.0协议。'''
    
[[Category:神经元 ]]
 
[[Category:神经元 ]]
 
[[Category:医学术语]]
 
[[Category:医学术语]]
7,129

个编辑