更改

删除14字节 、 2022年5月21日 (六) 10:48
第47行: 第47行:     
受'''约束'''的'''正反馈'''过程能够产生双稳性。正反馈机制(比如 X 激活 Y、Y 激活 X)将输出信号与输入信号耦合在一起,使系统向特定方向持续演化。约束机制防止正反馈过程无止境地进行。它们协同作用可以产生'''全或无All-or-none'''信号开关[7]。许多生物化学系统(如非洲爪蟾卵“Xenopus”母细胞的成熟过程[8]、哺乳动物的钙信号转导过程和芽殖酵母“budding yeast”的极化)都包含或慢或快的时序正反馈回路,有时二者兼而有之,称为“双时间开关dual-time switches”。dual-time switches能够增加调节能力(每个开关具有独立可变的激活和失活时间)并过滤噪声<ref name="O. Brandman, J. E 2005">O. Brandman, J. E. Ferrell Jr., R. Li, T. Meyer, Science 310, 496 (2005)</ref>。
 
受'''约束'''的'''正反馈'''过程能够产生双稳性。正反馈机制(比如 X 激活 Y、Y 激活 X)将输出信号与输入信号耦合在一起,使系统向特定方向持续演化。约束机制防止正反馈过程无止境地进行。它们协同作用可以产生'''全或无All-or-none'''信号开关[7]。许多生物化学系统(如非洲爪蟾卵“Xenopus”母细胞的成熟过程[8]、哺乳动物的钙信号转导过程和芽殖酵母“budding yeast”的极化)都包含或慢或快的时序正反馈回路,有时二者兼而有之,称为“双时间开关dual-time switches”。dual-time switches能够增加调节能力(每个开关具有独立可变的激活和失活时间)并过滤噪声<ref name="O. Brandman, J. E 2005">O. Brandman, J. E. Ferrell Jr., R. Li, T. Meyer, Science 310, 496 (2005)</ref>。
      
生化参数处于特定范围内时才能产生双稳性,这些参数共同影响着反馈强度。以单一参数 r 调节反馈强度的系统为例:(1)当 r <r1时,系统只有一个稳定不动点x1。(2)当 r1<r<r2时,一个'''鞍结分岔saddle-node bifurcation'''产生一对新的不动点:不稳定点x2和稳定点x3,且x1<x2<x3。它们构成双稳态系统。(3)当 r2<r时 ,x1与x2作为鞍结分岔逆过程融合消失,只留下x3。
 
生化参数处于特定范围内时才能产生双稳性,这些参数共同影响着反馈强度。以单一参数 r 调节反馈强度的系统为例:(1)当 r <r1时,系统只有一个稳定不动点x1。(2)当 r1<r<r2时,一个'''鞍结分岔saddle-node bifurcation'''产生一对新的不动点:不稳定点x2和稳定点x3,且x1<x2<x3。它们构成双稳态系统。(3)当 r2<r时 ,x1与x2作为鞍结分岔逆过程融合消失,只留下x3。
   −
 
+
具有上述特点的数学模型比如<ref name="Angeli 2003">{{cite journal| author1 = Angeli, David| author2=Ferrell, JE| author3=Sontag, Eduardo D| title=Detection of multistability, bifurcations, and hysteresis in a large calss of biological positive-feedback systems| journal=PNAS| year=2003| volume=101| issue=7| doi=10.1073/pnas.0308265100| pmid=14766974| pmc=357011| pages=1822–7| bibcode=2004PNAS..101.1822A| doi-access=free}}</ref>:
具有上述特点的数学模型样例如下<ref name="Angeli 2003">{{cite journal| author1 = Angeli, David| author2=Ferrell, JE| author3=Sontag, Eduardo D| title=Detection of multistability, bifurcations, and hysteresis in a large calss of biological positive-feedback systems| journal=PNAS| year=2003| volume=101| issue=7| doi=10.1073/pnas.0308265100| pmid=14766974| pmc=357011| pages=1822–7| bibcode=2004PNAS..101.1822A| doi-access=free}}</ref>:
+
<math>\frac{\mathrm{d}x}{\mathrm{d}t} = r + \frac{x^5}{1+x^5} - x</math>
 
  −
:<math>
  −
\frac{\mathrm{d}x}{\mathrm{d}t} = r + \frac{x^5}{1+x^5} - x
  −
</math>
        第65行: 第60行:     
双稳态化学体系已经被广泛研究,用以分析弛豫动力学,非平衡态热力学,随机共振,以及气候变化<ref name=Wilhelm/>。在'''空间扩展系统spatially extended systems'''中,双稳态被用以分析局域相关性和行波的传播。<ref name=Elf>{{cite journal |last1 = Elf |first1 = J. | last2 = Ehrenberg| first2 = M. |year = 2004 |title = Spontaneous separation of bi-stable biochemical systems into spatial domains of opposite phases |journal = Systems Biology|volume = 1 |number = 2| pages = 230–236 |pmid = 17051695 | doi=10.1049/sb:20045021}}</ref><ref name=Kochanzyck>{{cite journal |last1 = Kochanczyk |first1 = M. |last2 = Jaruszewicz |first2 = J. |last3 = Lipniacki |first3 = T. |title = Stochastic transitions in a bistable reaction system on the membrane |journal = Journal of the Royal Society Interface |volume = 10 |number = 84 |pages = 20130151 |pmid = 23635492 |pmc = 3673150 |doi =  10.1098/rsif.2013.0151 |date=Jul 2013}}</ref>
 
双稳态化学体系已经被广泛研究,用以分析弛豫动力学,非平衡态热力学,随机共振,以及气候变化<ref name=Wilhelm/>。在'''空间扩展系统spatially extended systems'''中,双稳态被用以分析局域相关性和行波的传播。<ref name=Elf>{{cite journal |last1 = Elf |first1 = J. | last2 = Ehrenberg| first2 = M. |year = 2004 |title = Spontaneous separation of bi-stable biochemical systems into spatial domains of opposite phases |journal = Systems Biology|volume = 1 |number = 2| pages = 230–236 |pmid = 17051695 | doi=10.1049/sb:20045021}}</ref><ref name=Kochanzyck>{{cite journal |last1 = Kochanczyk |first1 = M. |last2 = Jaruszewicz |first2 = J. |last3 = Lipniacki |first3 = T. |title = Stochastic transitions in a bistable reaction system on the membrane |journal = Journal of the Royal Society Interface |volume = 10 |number = 84 |pages = 20130151 |pmid = 23635492 |pmc = 3673150 |doi =  10.1098/rsif.2013.0151 |date=Jul 2013}}</ref>
      
双稳态常伴有'''滞回现象hysteresis'''。在细胞群体水平上,如果内部存在许多种双稳态机制(比如双稳态细胞<ref name=Nielsen>{{cite journal |author = Nielsen |last2 = Dolganov |first2 = Nadia A. |last3 = Rasmussen |first3 = Thomas |last4 = Otto |first4 = Glen |last5 = Miller |first5 = Michael C. |last6 = Felt |first6 = Stephen A. |last7 = Torreilles |first7 = Stéphanie |last8 = Schoolnik |first8 = Gary K. |editor1-last = Isberg |year = 2010 |editor1-first = Ralph R. |title = A Bistable Switch and Anatomical Site Control Vibrio cholerae Virulence Gene Expression in the Intestine |journal = PLOS Pathogens |volume = 6 |issue = 9 |pages = 1 |doi=10.1371/journal.ppat.1001102
 
双稳态常伴有'''滞回现象hysteresis'''。在细胞群体水平上,如果内部存在许多种双稳态机制(比如双稳态细胞<ref name=Nielsen>{{cite journal |author = Nielsen |last2 = Dolganov |first2 = Nadia A. |last3 = Rasmussen |first3 = Thomas |last4 = Otto |first4 = Glen |last5 = Miller |first5 = Michael C. |last6 = Felt |first6 = Stephen A. |last7 = Torreilles |first7 = Stéphanie |last8 = Schoolnik |first8 = Gary K. |editor1-last = Isberg |year = 2010 |editor1-first = Ralph R. |title = A Bistable Switch and Anatomical Site Control Vibrio cholerae Virulence Gene Expression in the Intestine |journal = PLOS Pathogens |volume = 6 |issue = 9 |pages = 1 |doi=10.1371/journal.ppat.1001102
 
|pmid = 20862321 |pmc = 2940755|display-authors=etal}}</ref>),系统状态通常处于双峰分布,其变化过程就像平滑的过渡。这种个体与群体的关联性也体现了单细胞研究的价值。
 
|pmid = 20862321 |pmc = 2940755|display-authors=etal}}</ref>),系统状态通常处于双峰分布,其变化过程就像平滑的过渡。这种个体与群体的关联性也体现了单细胞研究的价值。
      
一种特殊类型的不稳定性被称为'''模式跳变modehopping''',它是频率空间中的双稳定性。系统的演化轨迹可以在两个稳定极限环stable limit cycle之间跳转,在庞加莱截面Poincare section内呈现出双稳态相似的特性。
 
一种特殊类型的不稳定性被称为'''模式跳变modehopping''',它是频率空间中的双稳定性。系统的演化轨迹可以在两个稳定极限环stable limit cycle之间跳转,在庞加莱截面Poincare section内呈现出双稳态相似的特性。
45

个编辑