打开主菜单
首页
随机
登录
设置
关于集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
免责声明
集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
搜索
更改
←上一编辑
下一编辑→
干预
(查看源代码)
2022年6月11日 (六) 00:43的版本
删除2字节
、
2022年6月11日 (六) 00:43
无编辑摘要
第88行:
第88行:
== 干预实例 ==
== 干预实例 ==
−
以图1为例,如果我们要进行干预以降低冰激凌销量(比如,关闭所有冰激凌店),那么我们就去掉所有指向冰激凌销量 的边,并得到如图2所示的图模型。当我们在这个新的图模型中检验相关性时,我们发现犯罪率当然是与冰激凌销量完全独立的,因为冰激凌销量已经与天气温度无关了。换句话说,即使我们将 的值调整为另一个不变的值,这种变化也不会传递给可变的犯罪率 。我们看到,与以某个变量为条件不同,干预一个变量会导致一种完全不同的相关性关系,以某个变量为条件可以完全从数据中获得,但干预却会影响图模型结构的变化。
−
−
在符号的表达上,我们使用do算子来表达这种干预。比如,当我们固定Y的值为y时,我们用do(Y=y)来表示这种干预行为。所以P(Z=z|Y=y)表示当以Y=y为条件时Z=z的概率,而P(Z=z|do(Y=y))表示当我们干预Y的值使其为y时,Z=z的概率。从概率分布的角度来说, 表示的是在Y可取的所有值中, Y=y那部分样本对应的Z=z的概率,而P(Z=z|do(Y=y)) 表示的是将每一个样本的Y的值全部固定为y后Z=z的概率。这两者是完全不同的,干预改变了原始数据的分布,而以变量为条件不改变原始数据的分布。
[[文件:因果模型.png|缩略图|342x342像素|图1 干预前|替代=|无]]
[[文件:因果模型.png|缩略图|342x342像素|图1 干预前|替代=|无]]
−
[[文件:图1 干预模型.png|缩略图|344x344像素|图2 干预后|替代=|无]]
+
[[文件:图1 干预模型.png|缩略图|344x344像素|图2 干预后|替代=|无]]
以图1为例,如果我们要进行干预以降低冰激凌销量(比如,关闭所有冰激凌店),那么我们就去掉所有指向冰激凌销量 的边,并得到如图2所示的图模型。当我们在这个新的图模型中检验相关性时,我们发现犯罪率当然是与冰激凌销量完全独立的,因为冰激凌销量已经与天气温度无关了。换句话说,即使我们将 的值调整为另一个不变的值,这种变化也不会传递给可变的犯罪率 。我们看到,与以某个变量为条件不同,干预一个变量会导致一种完全不同的相关性关系,以某个变量为条件可以完全从数据中获得,但干预却会影响图模型结构的变化。
+
在符号的表达上,我们使用do算子来表达这种干预。比如,当我们固定Y的值为y时,我们用do(Y=y)来表示这种干预行为。所以P(Z=z|Y=y)表示当以Y=y为条件时Z=z的概率,而P(Z=z|do(Y=y))表示当我们干预Y的值使其为y时,Z=z的概率。从概率分布的角度来说, 表示的是在Y可取的所有值中, Y=y那部分样本对应的Z=z的概率,而P(Z=z|do(Y=y)) 表示的是将每一个样本的Y的值全部固定为y后Z=z的概率。这两者是完全不同的,干预改变了原始数据的分布,而以变量为条件不改变原始数据的分布。
== 编者推荐 ==
== 编者推荐 ==
是趣木木呀
管理员
587
个编辑