更改

添加187字节 、 2022年6月14日 (二) 17:30
无编辑摘要
第45行: 第45行:  
If these inputs arrive from neurons that fire at independent random times, they are expected to produce an almost constant depolarization leading to a regular firing.  
 
If these inputs arrive from neurons that fire at independent random times, they are expected to produce an almost constant depolarization leading to a regular firing.  
   −
如果这些输入来自在独立随机的时间点发放的神经元,则它们将产生几乎恒定的去极化,从而导致有规律的发放。
+
如果这些输入来自在独立随机的时间点发放的神经元,则它们将产生几乎恒定的去极化,引起有规律的发放。
    
However, spike trains extracellularly recorded from single cortical neurons exhibit high variability.  
 
However, spike trains extracellularly recorded from single cortical neurons exhibit high variability.  
第85行: 第85行:  
(Crochet and Petersen, 2006; DeWeese and Zador, 2006; Poulet and Petersen, 2008; Okun et al., 2010; Polack et al., 2013; Sachidhanandam et al., 2013; Tan et al., 2014).  
 
(Crochet and Petersen, 2006; DeWeese and Zador, 2006; Poulet and Petersen, 2008; Okun et al., 2010; Polack et al., 2013; Sachidhanandam et al., 2013; Tan et al., 2014).  
   −
事实上,如下所述,尽管兴奋和抑制是平衡的,但皮质神经元的膜电位并不一定遵循这些早期模型预测的随机游走轨迹
+
如下所述,尽管兴奋和抑制是平衡的,但皮质神经元的膜电位并不一定遵循这些早期模型预测的随机游走轨迹。
    
(Crochet和Petersen,2006;DeWeese和Zador,2006年;Poulet和Petersen,2008;奥坤等人, 2010;Polack et al., 2013;Sachidhanandam等人, 2013;谭等人,2014)。
 
(Crochet和Petersen,2006;DeWeese和Zador,2006年;Poulet和Petersen,2008;奥坤等人, 2010;Polack et al., 2013;Sachidhanandam等人, 2013;谭等人,2014)。
第121行: 第121行:  
where \(E_{leak}\) is the resting membrane potential of the neuron, \(C\) is its capacitance, \(G_{leak}\) is the mean conductance in absence of stimulation (the inverse of input resistance), \(E_{ex}\) and \(E_{in}\) are the reversal potentials of excitation and inhibition, and \(I_{inj}\) is the current injected through the recording pipette.  
 
where \(E_{leak}\) is the resting membrane potential of the neuron, \(C\) is its capacitance, \(G_{leak}\) is the mean conductance in absence of stimulation (the inverse of input resistance), \(E_{ex}\) and \(E_{in}\) are the reversal potentials of excitation and inhibition, and \(I_{inj}\) is the current injected through the recording pipette.  
   −
其中<math>E_{leak}</math>是神经元的静息膜电位,C是其电容,<math>G_{leak}</math>是在没有刺激的情况下的平均电导(输入电阻的倒数),<math>E_{ex}</math>和<math>E_{in}</math>是兴奋和抑制的反转电位,<math>I_{inj}</math>是通过记录移液管注入的电流。
+
其中<math>E_{leak}</math>是神经元的静息膜电位,C是其电容,<math>G_{leak}</math>是在没有刺激的情况下的平均电导(输入电阻的倒数),<math>E_{ex}</math>和<math>E_{in}</math>是兴奋和抑制的反转电位,<math>I_{in}</math>是通过记录移液管注入的电流。
    
By fitting equation (1) to the average responses at different holding potentials, the synaptic conductances evoked by the stimulus, \(G_{ex}(t)\) and \(G_{in}(t)\ ,\) can be computed (see Figure 1).  
 
By fitting equation (1) to the average responses at different holding potentials, the synaptic conductances evoked by the stimulus, \(G_{ex}(t)\) and \(G_{in}(t)\ ,\) can be computed (see Figure 1).  
   −
通过将方程(1)拟合到不同保持电位下的平均响应,可以计算出由刺激<math>G_{ex}(t)</math>和<math>G_{in}(t)</math>引起的突触电导(见图1)。
+
通过将方程(1)拟合到不同保持电位下的平均响应,可以计算出由刺激<math>G_{ex}(t)</math>和<math>G_{in}(t)</math>引起的突触电导(见图1)。
    
For an in-depth review of the method and its caveats an interested reader is referred to (Monier et al., 2008).
 
For an in-depth review of the method and its caveats an interested reader is referred to (Monier et al., 2008).
第147行: 第147行:  
The feedforward model (Hubel and Wiesel, 1962) was supported by various studies (Nelson et al., 1994; Alonso and Martinez, 1998; Chung and Ferster, 1998; Martinez and Alonso, 2001), while being challenged by others (Sillito, 1975; Volgushev et al., 1996).  
 
The feedforward model (Hubel and Wiesel, 1962) was supported by various studies (Nelson et al., 1994; Alonso and Martinez, 1998; Chung and Ferster, 1998; Martinez and Alonso, 2001), while being challenged by others (Sillito, 1975; Volgushev et al., 1996).  
   −
前馈模型(Hubel和Wiesel,1962)得到了各种研究的支持(Nelson等人,1994;阿隆索和马丁内斯,1998年;钟和费斯特, 1998;马丁内斯和阿隆索,2001),同时受到其他人的挑战(Sillito,1975;Volgushev等人,1996年)。
+
'''<font color="#ff8000">前馈模型feedforward model</font>'''(Hubel和Wiesel,1962)得到了各种研究的支持(Nelson等人,1994;阿隆索和马丁内斯,1998年;钟和费斯特, 1998;马丁内斯和阿隆索,2001),同时受到其他人的挑战(Sillito,1975;Volgushev等人,1996年)。
    
The feedforward model, however, failed to predict several key experimental findings, and in particular the contrast invariance of orientation tuning (Ferster and Miller, 2000).  
 
The feedforward model, however, failed to predict several key experimental findings, and in particular the contrast invariance of orientation tuning (Ferster and Miller, 2000).  
第155行: 第155行:  
Alternative models proposed that the tuning of inhibitory inputs is wider, so that excitation and inhibition form a 'Mexican hat' interaction pattern which sharpens the selectivity of the cells (Ben-Yishai et al., 1995; Somers et al., 1995; Hansel and Sompolinsky, 1996).  
 
Alternative models proposed that the tuning of inhibitory inputs is wider, so that excitation and inhibition form a 'Mexican hat' interaction pattern which sharpens the selectivity of the cells (Ben-Yishai et al., 1995; Somers et al., 1995; Hansel and Sompolinsky, 1996).  
   −
替代模型提出,抑制性输入的调谐范围更广,因此兴奋和抑制形成了"墨西哥帽"相互作用模式,从而提高了细胞的选择性(Ben-Yishai等人,1995;萨默斯等人,1995年;汉赛尔和索姆波林斯基,1996年)。
+
替代模型提出,抑制性输入的调谐范围更广,因此兴奋和抑制形成了'''<font color="#ff8000">"墨西哥帽Mexican hat"</font>'''相互作用模式,从而提高了细胞的选择性(Ben-Yishai等人,1995;萨默斯等人,1995年;汉赛尔和索姆波林斯基,1996年)。
    
In the primary auditory cortex inhibition was similarly suggested to account for the sensory selectivity of the neurons (Calford and Semple, 1995; Sutter et al., 1999; Wang et al., 2002).
 
In the primary auditory cortex inhibition was similarly suggested to account for the sensory selectivity of the neurons (Calford and Semple, 1995; Sutter et al., 1999; Wang et al., 2002).
第209行: 第209行:  
同样在听觉皮层,一些强度调谐神经元接收到的兴奋性输入在偏好强度时达到峰值,而它们的抑制性输入随着刺激强度单调增加(Wu等人,2006年),这体现了兴奋和抑制的共同调谐发生破坏的例子。
 
同样在听觉皮层,一些强度调谐神经元接收到的兴奋性输入在偏好强度时达到峰值,而它们的抑制性输入随着刺激强度单调增加(Wu等人,2006年),这体现了兴奋和抑制的共同调谐发生破坏的例子。
   −
Finally, it should be noted that the tuning of inhibitory and excitatory inputs alone is not sufficient to substantiate specific theoretical models for feature selectivity in the cortex, because broad tuning of inhibition may either reflect non-specific convergence of inputs from a population of inhibitory cells that demonstrate highly selective but non-overlapping orientation tuning curves, or simply result from the wide tuning curves of their innervating inhibitory neurons (Shapley and Xing, 2013; Section 6 below).
+
Finally, it should be noted that the tuning of inhibitory and excitatory inputs alone is not sufficient to substantiate specific theoretical models for feature selectivity in the cortex, because broad tuning of inhibition may either reflect non-specific convergence of inputs from a population of inhibitory cells that demonstrate highly selective but non-overlapping orientation tuning curves, or simply result from the wide tuning curves of their '''<font color="#32CD32">innervating</font>''' inhibitory neurons (Shapley and Xing, 2013; Section 6 below).
   −
最后,应注意的是,仅抑制性和兴奋性输入的调谐不足以证实皮质中特征选择性的具体理论模型,因为抑制性的广泛调谐可能反映了抑制性细胞群输入的非特异性收敛,这些抑制性细胞群显示出具有高度选择性但不重叠的方向调谐曲线,或者仅仅是由于它们的神经支配(??)抑制神经元的宽调谐曲线(Shapley和Xing,2013;下文第6节)。
+
最后,应注意的是,仅抑制性和兴奋性输入的调谐不足以证实皮质中特征选择性的具体理论模型,因为抑制性的广泛调谐可能反映了抑制性细胞群输入的非特异性收敛,这些抑制性细胞群显示出具有高度选择性但不重叠的方向调谐曲线,或者仅仅是由于它们的'''<font color="#32CD32">神经支配</font>'''抑制神经元的宽调谐曲线(Shapley和Xing,2013;下文第6节)。
       
== Temporal structure of sensory evoked excitation and inhibition 感觉诱发电能和抑制的时间结构 ==
 
== Temporal structure of sensory evoked excitation and inhibition 感觉诱发电能和抑制的时间结构 ==
   −
In the auditory and somatosensory cortices sensory stimulation often evokes stereotypic sequence of excitation followed within a few milliseconds by inhibition (Wehr and Zador, 2003; Higley and Contreras, 2006).  
+
In the auditory and somatosensory cortices sensory stimulation often evokes '''<font color="#32CD32">stereotypic</font>''' sequence of excitation followed within a few milliseconds by inhibition (Wehr and Zador, 2003; Higley and Contreras, 2006).  
   −
在听觉和体感皮层中,感觉刺激经常唤起定型(??)的兴奋序列,随后在几毫秒内受到抑制(Wehr和Zador,2003;Higley和Contreras,2006)。
+
在听觉和体感皮层中,感觉刺激经常唤起在随后几毫秒内受抑制的'''<font color="#32CD32">定型</font>'''兴奋序列,(Wehr和Zador,2003;Higley和Contreras,2006)。
    
Although excitation and inhibition are similarly tuned and hence are said to be balanced, a large imbalance occurs at the fine time scale, as inhibition lags behind excitation by several milliseconds.  
 
Although excitation and inhibition are similarly tuned and hence are said to be balanced, a large imbalance occurs at the fine time scale, as inhibition lags behind excitation by several milliseconds.  
82

个编辑