更改

第9行: 第9行:     
== 作者简介 ==
 
== 作者简介 ==
 +
 +
=== Guido W. Imbens ===
 
Guido W. Imbens<ref>https://www.gsb.stanford.edu/faculty-research/faculty/guido-w-imbens</ref><ref>https://en.wikipedia.org/wiki/Guido_Imbens</ref>,荷兰裔美国经济学家,于斯坦福大学斯坦福商学院任职应用计量经济学教授和经济学教授,研究领域为经济学和统计学。2021年,与Joshua Angrist共同获得诺贝尔经济学奖,“以表彰他们在分析因果关系方面的方法论贡献”。
 
Guido W. Imbens<ref>https://www.gsb.stanford.edu/faculty-research/faculty/guido-w-imbens</ref><ref>https://en.wikipedia.org/wiki/Guido_Imbens</ref>,荷兰裔美国经济学家,于斯坦福大学斯坦福商学院任职应用计量经济学教授和经济学教授,研究领域为经济学和统计学。2021年,与Joshua Angrist共同获得诺贝尔经济学奖,“以表彰他们在分析因果关系方面的方法论贡献”。
    +
Imbens曾分别任教于哈佛大学(1990-1997,2006-2012年),蒂尔堡大学(1989-1990年),加州大学洛杉矶分校(1997-2001年),加州大学伯克利分校(2002-06年)。他主要研究计量经济学,这是一种描绘因果推理的特殊方法。他于2019年成为《Econometrica》杂志的编辑,并将担任这一职务直到2023年。截至2021年,他是斯坦福大学商学院应用计量经济学和经济学教授。他还是斯坦福大学经济政策研究所(SIEPR)的高级研究员,以及该所人文与社会科学学院的经济学教授。因本斯是经济计量学会(2001年)和美国艺术与科学学院的研究员。2017年,因本斯被选为荷兰皇家艺术与科学学院的外籍成员。2020年,他被评选为美国统计协会会员。
 +
 +
与经济学家同行,包括Joshua Angrist和Alan Krueger合作,Imbens致力于开发方法论和框架,帮助经济学家利用现实生活中的情况(即自然试验)来检验现实生活中的理论。通过他的研究,帮助经济学家分析因果关系,通过他研究分析的一些问题,包括大学教育或额外的教育年限对收入的影响,使得因果关系研究框架在很多其他领域也有了应用,包括社会学和生物医学。他的工作为跨学科的研究人员提供了理解现实世界工具,提高了他们更好地理解基于实地和试验数据的干预措施的效果的能力。这些方法有助于研究人员分析各种研究问题,包括研究新政策对经济活动和新药对患者有效性的影响等。
 +
 +
=== Donald B. Rubin ===
 
Donald B. Rubin<ref>https://statistics.fas.harvard.edu/people/donald-b-rubin</ref><ref>https://en.wikipedia.org/wiki/Donald_Rubin</ref>,哈佛大学统计系名誉教授,曾在那里担任13年统计系主任,同时在清华大学和费城坦普尔大学工作。其研究兴趣为实验和观察研究中的因果推理、在无响应的样本调查和缺失数据问题中的推断、贝叶斯和经验贝叶斯技术的应用和开发统计模型并将其应用于各种科学学科的数据。
 
Donald B. Rubin<ref>https://statistics.fas.harvard.edu/people/donald-b-rubin</ref><ref>https://en.wikipedia.org/wiki/Donald_Rubin</ref>,哈佛大学统计系名誉教授,曾在那里担任13年统计系主任,同时在清华大学和费城坦普尔大学工作。其研究兴趣为实验和观察研究中的因果推理、在无响应的样本调查和缺失数据问题中的推断、贝叶斯和经验贝叶斯技术的应用和开发统计模型并将其应用于各种科学学科的数据。
 +
 +
Donald Rubin教授是当今世界影响力最深远的统计学家之一,他在现代统计领域做出了许多基础贡献,特别是在缺失数据和因果推断方面。他也是世界上被引用最多的科学作者之一,根据谷歌学者的数据,他被引用超过25万次。此外,截至2019年底,他有10篇单独发表的论文,每一篇都被引用超过1000次。他获得过统计学领域几乎所有著名奖项,是当今世界最具影响力的统计学家。他对科学的贡献已超出统计学范畴,其统计思想对生物医学、经济学、心理学、教育学、社会学及计算机科学等众多领域均产生了重要影响。
    
== 目录及概要 ==
 
== 目录及概要 ==
第24行: 第33行:  
PART 2: 经典随机实验
 
PART 2: 经典随机实验
   −
内容:经典随机实验部分,讨论了假设分配机制对应于经典随机实验的情况。这一章回顾了一些潜在结果方法的实例,其中两个重要早期发展,一个是在20世纪20年代,奈曼将潜在结果引入随机试验,另一个是费舍引入随机化作为推理的“理性基础”。
+
内容:经典随机实验部分,讨论了假设分配机制对应于经典随机实验的情况。这一章回顾了一些潜在结果方法的实例,其中两个重要早期发展,一个是在20世纪20年代,Neymen将潜在结果引入随机试验,另一个是Fisher引入随机化作为推理的“理性基础”。
    
# 经典随机实验的分类
 
# 经典随机实验的分类
316

个编辑