更改

添加40字节 、 2022年7月18日 (一) 21:56
无编辑摘要
第1行: 第1行: −
此词条由因果科学读书会词条梳理志愿者我是猫(74989)翻译审校,未经专家审核,带来阅读不便,请见谅
+
'''潜在结果'''最初由Jerzy Neyman提出,但Neyman只在随机试验的背景下讨论了潜在结果,后来Donald Rubin将潜在结果拓展到观察性研究中。
    
== 概念来源 ==
 
== 概念来源 ==
第20行: 第20行:  
使用潜在结果我们或许可以理解为什么人们不会认为“太阳升起是因为鸡打鸣”,因为根据我们的常识,如果某天鸡不打鸣(或许是因为生病或劳累),太阳仍然会照常升起。
 
使用潜在结果我们或许可以理解为什么人们不会认为“太阳升起是因为鸡打鸣”,因为根据我们的常识,如果某天鸡不打鸣(或许是因为生病或劳累),太阳仍然会照常升起。
   −
'''因此从分析潜在结果出发,诞生了<font color="#ff8000">潜在结果框架,有时也称为</font>鲁宾因果模型 Rubin Causal Model (RCM)''' ,'''Neyman-Rubin 因果模型'''<ref name="sekhon">{{cite book |last=Sekhon |first=Jasjeet |chapter=The Neyman–Rubin Model of Causal Inference and Estimation via Matching Methods |title=The Oxford Handbook of Political Methodology |year=2007 |chapter-url=http://sekhon.berkeley.edu/papers/SekhonOxfordHandbook.pdf }}</ref>。它是一种基于潜在结果框架的因果统计分析方法,以Donald Rubin的名字命名。“鲁宾因果模型”这个名字最早是由 Paul W. Holland 创造的。 <ref name="holland:causal86">{{cite journal |last=Holland |first=Paul W. |title=Statistics and Causal Inference |journal=Journal of the American Statistical Association |volume=81 |issue=396 |year=1986 |pages=945–960 |jstor=2289064 |doi=10.1080/01621459.1986.10478354}}</ref> '''<font color="#ff8000"> 潜在结果框架 Potential Outcomes Framework</font>'''最初是由 Jerzy Neyman 在他 1923 年的硕士论文中提出的,<ref name="neyman:masters">Neyman, Jerzy. ''Sur les applications de la theorie des probabilites aux experiences agricoles: Essai des principes.'' Master's Thesis (1923).  Excerpts reprinted in English, Statistical Science, Vol. 5, pp.&nbsp;463–472. (Dorota Dabrowska, and T. P. Speed, Translators.)</ref>尽管他只在完全随机实验的背景下讨论了它。 <ref name="Jasa1">{{cite journal |last=Rubin |first=Donald |year=2005 |title=Causal Inference Using Potential Outcomes |journal=Journal of the American Statistical Association|volume=100 |issue=469 |pages=322–331 |doi=10.1198/016214504000001880 }}</ref>鲁宾将其扩展为在观察性和实验性研究中思考因果关系的一般框架。<ref name="sekhon" />
+
'''因此从分析潜在结果出发,诞生了<font color="#ff8000">潜在结果框架,有时也称为</font>鲁宾因果模型 Rubin Causal Model (RCM)''' ,'''Neyman-Rubin 因果模型'''<ref name="sekhon">{{cite book |last=Sekhon |first=Jasjeet |chapter=The Neyman–Rubin Model of Causal Inference and Estimation via Matching Methods |title=The Oxford Handbook of Political Methodology |year=2007 |chapter-url=http://sekhon.berkeley.edu/papers/SekhonOxfordHandbook.pdf }}</ref>。它是一种基于潜在结果框架的因果统计分析方法,以Donald Rubin的名字命名。“鲁宾因果模型”这个名字最早是由 Paul W. Holland 创造的。 <ref name="holland:causal86">{{cite journal |last=Holland |first=Paul W. |title=Statistics and Causal Inference |journal=Journal of the American Statistical Association |volume=81 |issue=396 |year=1986 |pages=945–960 |jstor=2289064 |doi=10.1080/01621459.1986.10478354}}</ref> '''<font color="#ff8000"> 潜在结果框架 Potential Outcomes Framework</font>'''最初是由 Jerzy Neyman 在他 1923 年的硕士论文中提出的,<ref name="neyman:masters">Neyman, Jerzy. ''Sur les applications de la theorie des probabilites aux experiences agricoles: Essai des principes.'' Master's Thesis (1923).  Excerpts reprinted in English, Statistical Science, Vol. 5, pp.&nbsp;463–472. (Dorota Dabrowska, and T. P. Speed, Translators.)</ref>尽管他只在完全随机实验的背景下讨论了它。 <ref name="Jasa1">{{cite journal |last=Rubin |first=Donald |year=2005 |title=Causal Inference Using Potential Outcomes |journal=Journal of the American Statistical Association|volume=100 |issue=469 |pages=322–331 |doi=10.1198/016214504000001880 }}</ref>Donald Rubin将其扩展为在观察性和实验性研究中思考因果关系的一般框架。<ref name="sekhon" />
    
== 思想介绍 ==
 
== 思想介绍 ==