更改

添加6字节 、 2020年4月14日 (二) 19:39
第171行: 第171行:  
因此,我们可以通过依次求解方程<math>Q^{n}(c) = 0, n = 1, 2, 3, ...</math>来构造双曲分量的中心。每一步产生的新中心的个数由斯隆的OEIS: A00074给出。OEIS的全称为:The On-Line Encyclopedia of Integer Sequences™ (OEIS™),它是一个关于整数序列(数列)的专业型网站,是一个关于组合数学研究的重要的网站,里面包含了众多数列的研究成果。
 
因此,我们可以通过依次求解方程<math>Q^{n}(c) = 0, n = 1, 2, 3, ...</math>来构造双曲分量的中心。每一步产生的新中心的个数由斯隆的OEIS: A00074给出。OEIS的全称为:The On-Line Encyclopedia of Integer Sequences™ (OEIS™),它是一个关于整数序列(数列)的专业型网站,是一个关于组合数学研究的重要的网站,里面包含了众多数列的研究成果。
    +
<br/>
 
[[File:P17_Cactus_model_of_Mandelbrot_set.svg.png|200px|thumb|right|没有曼德布洛特集的微小副本和 Misiurewicz 点的曼德布洛特拓扑模型(Cactus 模型)]]
 
[[File:P17_Cactus_model_of_Mandelbrot_set.svg.png|200px|thumb|right|没有曼德布洛特集的微小副本和 Misiurewicz 点的曼德布洛特拓扑模型(Cactus 模型)]]
 
===连通性 Local connectivity===
 
===连通性 Local connectivity===
7,129

个编辑