更改

删除4,610字节 、 2023年2月12日 (日) 20:21
无编辑摘要
第13行: 第13行:       −
时间序列分析可以应用于实值、连续数据、离散数值Numeric数据或离散符号数据(即字符序列,如英语中的字母和单词<ref name=":0">{{cite book |last1=Lin |first1=Jessica |last2=Keogh |first2=Eamonn |last3=Lonardi |first3=Stefano |last4=Chiu |first4=Bill |chapter=A symbolic representation of time series, with implications for streaming algorithms |title=Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery |pages=2–11 |year=2003 |location=New York |publisher=ACM Press |doi=10.1145/882082.882086|citeseerx=10.1.1.14.5597 |s2cid=6084733 }}</ref>)。
+
时间序列分析可以应用于实值、连续数据、离散数据或离散符号数据(即字符序列,如英语中的字母和单词<ref name=":0">{{cite book |last1=Lin |first1=Jessica |last2=Keogh |first2=Eamonn |last3=Lonardi |first3=Stefano |last4=Chiu |first4=Bill |chapter=A symbolic representation of time series, with implications for streaming algorithms |title=Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery |pages=2–11 |year=2003 |location=New York |publisher=ACM Press |doi=10.1145/882082.882086|citeseerx=10.1.1.14.5597 |s2cid=6084733 }}</ref>)。
 
===分析方法===
 
===分析方法===
   第82行: 第82行:  
===时间序列分析在信号处理上的应用===
 
===时间序列分析在信号处理上的应用===
 
{{see also|Signal processing|Estimation theory}}
 
{{see also|Signal processing|Estimation theory}}
这种方法是基于傅里叶分析信号和滤波的频域使用傅里叶变换和谱密度估计,该方法在二战期间迅速得以推广。数学家诺伯特维纳,电气工程师鲁道夫·卡尔曼,丹尼斯和其他学者完成了信号的滤波处理,且预测了在特定时间段中的信号值。相关知识参见卡尔曼滤波器,参数估测和数字信号处理的介绍。
+
这种方法是基于傅里叶分析信号和滤波的频域使用傅里叶变换和谱密度估计,该方法在二战期间迅速得以推广。数学家诺伯特维纳,电气工程师鲁道夫·卡尔曼,丹尼斯和其他学者完成了信号的滤波处理,且预测了在特定时间段中的信号值。相关知识可参见卡尔曼滤波器,参数估测和数字信号处理的介绍。
 
===时间序列的分割处理===
 
===时间序列的分割处理===
 
{{main|Time-series segmentation}}
 
{{main|Time-series segmentation}}
第95行: 第95行:       −
研究数据对过往的数据点的非线性依赖关系是有趣的,主要是它有产生混沌时间序列的可能性。然而,更重要的是,使用来自非线性模型的预测优于来自线性模型的预测。例如非线性自回归外生模型的预测准确度优于线性的回顾模型。
+
 
 +
研究数据对过往的数据点的非线性依赖关系是有趣的,因为它有产生混沌时间序列的可能性。然而,更重要的是,使用来自非线性模型的预测优于来自线性模型的预测。例如非线性自回归外生模型的预测准确度优于线性的回顾模型。
      第103行: 第104行:  
在最近的无模型分析工作中,基于小波变换的方法(如局部平稳小波和小波分解神经网络)得到了广泛的关注。多尺度(通常称为多分辨率)技术分解给定的时间序列能说明在多个尺度上的时间依赖。具体参见马尔可夫切换多重分形(MSMF)建模波动演化技术。
 
在最近的无模型分析工作中,基于小波变换的方法(如局部平稳小波和小波分解神经网络)得到了广泛的关注。多尺度(通常称为多分辨率)技术分解给定的时间序列能说明在多个尺度上的时间依赖。具体参见马尔可夫切换多重分形(MSMF)建模波动演化技术。
   −
A [[Hidden Markov model]] (HMM) is a statistical Markov model in which the system being modeled is assumed to be a Markov process with unobserved (hidden) states. An HMM can be considered as the simplest [[dynamic Bayesian network]]. HMM models are widely used in [[speech recognition]], for translating a time series of spoken words into text.
  −
  −
A Hidden Markov model (HMM) is a statistical Markov model in which the system being modeled is assumed to be a Markov process with unobserved (hidden) states. An HMM can be considered as the simplest dynamic Bayesian network. HMM models are widely used in speech recognition, for translating a time series of spoken words into text.
  −
  −
隐马尔可夫模型模型是一个统计马尔可夫模型,其中被建模的系统被假定为一个具有不可观测(隐藏)状态的马尔可夫过程。隐马尔科姆可以被认为是最简单的动态贝氏网路。隐马尔可夫模型广泛应用于语音识别中,用于将语音序列转换成文本。
  −
  −
===Notation===
  −
A number of different notations are in use for time-series analysis. A common notation specifying a time series ''X'' that is indexed by the [[natural number]]s is written
  −
:''X'' = (''X''<sub>1</sub>, ''X''<sub>2</sub>, ...).
     −
A number of different notations are in use for time-series analysis. A common notation specifying a time series X that is indexed by the natural numbers is written
+
隐马尔可夫模型模型是一个统计马尔可夫模型,其中被建模的系统被假定为一个具有不可观测(隐藏)状态的马尔可夫过程。隐马尔可夫可以被认为是最简单的动态贝氏网路。隐马尔可夫模型广泛应用于语音识别中,它能将语音序列转换成文本。
:X = (X1, X2, ...).
     −
= = = 表示法 = = 用于时间序列分析的许多不同的表示法。一个用于指定时间序列 x 的通用符号是: x = (X1,X2,...)。
+
===时间序列的表示方法===
 +
:
   −
Another common notation is
+
时间序列分析有许多不同的表示方法。一种表示指定时间序列 x 的通用方法是: x = (X1,X2,...)
:''Y'' = (''Y<sub>t</sub>'': ''t'' ∈ ''T''),
  −
where ''T'' is the [[index set]].
     −
Another common notation is
  −
:Y = (Yt: t ∈ T),
  −
where T is the index set.
      
另一种常用的表示法是: y = (Yt: t ∈ t) ,其中 t 是索引集。
 
另一种常用的表示法是: y = (Yt: t ∈ t) ,其中 t 是索引集。
   −
===Conditions===
+
===时间序列的相关概念--平稳过程与遍历过程===
There are two sets of conditions under which much of the theory is built:
+
大部分的时间序列建立在两个条件之下:  
* [[Stationary process]]
+
* 平稳过程
* [[Ergodic process]]
+
* 遍历过程
   −
There are two sets of conditions under which much of the theory is built:
  −
* Stationary process
  −
* Ergodic process
     −
这个理论的大部分建立在两个条件之下:  
+
时间序列的平稳性的概念必须考虑两个重要的概念: 严格平稳性和二阶平稳性。人们可以通过这2个概念去建立模型和开发应用程序。
* 平稳过程遍历过程
     −
However, ideas of stationarity must be expanded to consider two important ideas: [[strict stationarity]] and [[Stationary process#Weaker forms of stationarity|second-order stationarity]]. Both models and applications can be developed under each of these conditions, although the models in the latter case might be considered as only partly specified.
     −
However, ideas of stationarity must be expanded to consider two important ideas: strict stationarity and second-order stationarity. Both models and applications can be developed under each of these conditions, although the models in the latter case might be considered as only partly specified.
+
此外,时间序列分析可以应用于季节性平稳或处于非平稳状态下的序列。时频分析利用时间序列或信号的时频表示,可以处理频率分量振幅随时间变化的情况。
 
  −
然而,平稳性的概念必须扩展到考虑两个重要的概念: 严格平稳性和二阶平稳性。模型和应用程序都可以在这些条件中的每一种情况下开发,尽管后一种情况下的模型可能被认为只是部分具体说明。
  −
 
  −
In addition, time-series analysis can be applied where the series are [[Cyclostationary process|seasonally stationary]] or non-stationary. Situations where the amplitudes of frequency components change with time can be dealt with in [[time-frequency analysis]] which makes use of a [[time–frequency representation]] of a time-series or signal.<ref>Boashash, B. (ed.), (2003) ''Time-Frequency Signal Analysis and Processing: A Comprehensive Reference'', Elsevier Science, Oxford, 2003 {{isbn|0-08-044335-4}}</ref>
  −
 
  −
In addition, time-series analysis can be applied where the series are seasonally stationary or non-stationary. Situations where the amplitudes of frequency components change with time can be dealt with in time-frequency analysis which makes use of a time–frequency representation of a time-series or signal.Boashash, B. (ed.), (2003) Time-Frequency Signal Analysis and Processing: A Comprehensive Reference, Elsevier Science, Oxford, 2003
  −
 
  −
此外,时间序列分析可以应用于季节性平稳或非平稳的序列。时频分析利用时间序列或信号的时频表示,可以处理频率分量振幅随时间变化的情况。波阿什,b。我不知道你在说什么。) ,(2003)《时频信号分析与处理: 综合参考》 ,爱思唯尔科学出版社,牛津,2003
      
===形成,分析时间序列数据的工具与方法===
 
===形成,分析时间序列数据的工具与方法===
第406行: 第380行:  
* 隐马尔可夫模型状态
 
* 隐马尔可夫模型状态
 
*  
 
*  
* 粗糙路径签名[1] Chevyrev,i. ,Kormilitzin,a。(2016)“ a Primer on the Signature Method in Machine Learning,arXiv: 1603.03788 v1”
+
* 粗糙路径签名
 
*  
 
*  
 
* 替代时间序列和替代校正
 
* 替代时间序列和替代校正
第494行: 第468行:  
* Cramér-von Mises 准则
 
* Cramér-von Mises 准则
   −
==Visualization==
+
===时间序列的可视化===
      −
= = 可视化 = = 时间序列可以用两类图表进行可视化: 重叠图表和分离图表。重叠图表显示同一布局的所有时间序列,而分离图表显示不同的布局(但对齐用于比较)
+
时间序列可以用两类图表进行可视化: 重叠图表和分离图表。重叠图表显示同一布局的所有时间序列,而分离图表显示不同的布局(但对齐用于比较)
   −
===Overlapping charts===
  −
* [[Braided graphs]]
  −
* Line charts
  −
* Slope graphs
  −
* {{iw2|GapChart||fr}}
  −
  −
* Braided graphs
  −
* Line charts
  −
* Slope graphs
   
*  
 
*  
   −
= = = = 重叠图 = =  
+
= 重叠图 =  
 
* 编织图  
 
* 编织图  
 
* 线图  
 
* 线图  
第516行: 第481行:  
*  
 
*  
   −
===Separated charts===
+
= 分离图 =  
* [[Horizon graphs]]
  −
* Reduced line chart (small multiples)
  −
* Silhouette graph
  −
* Circular silhouette graph
  −
 
  −
* Horizon graphs
  −
* Reduced line chart (small multiples)
  −
* Silhouette graph
  −
* Circular silhouette graph
  −
 
  −
= = = = = 分离图表 = = =  
   
* 地平线图  
 
* 地平线图  
 
* 简化线图(小倍数)  
 
* 简化线图(小倍数)  
第533行: 第487行:  
* 圆形轮廓线图
 
* 圆形轮廓线图
   −
==See also==
+
===相关资料===
 
{{Columns-list|colwidth=30em|
 
{{Columns-list|colwidth=30em|
 
* [[Anomaly time series]]
 
* [[Anomaly time series]]
第558行: 第512行:  
}}
 
}}
   −
==References==
+
===参考文献===
 
{{Reflist|2}}
 
{{Reflist|2}}
   −
==Further reading==
+
*{{Citation
* {{Citation
   
  | author-link = George E. P. Box
 
  | author-link = George E. P. Box
 
  | last1 = Box | first1 = George
 
  | last1 = Box | first1 = George
第571行: 第524行:  
  | year = 1976
 
  | year = 1976
 
}}
 
}}
* [[James Durbin|Durbin J.]], Koopman S.J. (2001), ''Time Series Analysis by State Space Methods'', [[Oxford University Press]].
+
*[[James Durbin|Durbin J.]], Koopman S.J. (2001), ''Time Series Analysis by State Space Methods'', [[Oxford University Press]].
* {{Citation
+
*{{Citation
 
  | last = Gershenfeld | first =  Neil
 
  | last = Gershenfeld | first =  Neil
 
  | year = 2000
 
  | year = 2000
第580行: 第533行:  
  | oclc = 174825352
 
  | oclc = 174825352
 
}}
 
}}
* {{Citation
+
*{{Citation
 
  | author-link = James D. Hamilton
 
  | author-link = James D. Hamilton
 
  | last = Hamilton | first =  James
 
  | last = Hamilton | first =  James
第588行: 第541行:  
  | publisher = [[Princeton University Press]]
 
  | publisher = [[Princeton University Press]]
 
}}
 
}}
* [[Maurice Priestley|Priestley, M. B.]] (1981), ''Spectral Analysis and Time Series'', [[Academic Press]]. {{ISBN|978-0-12-564901-8}}
+
*[[Maurice Priestley|Priestley, M. B.]] (1981), ''Spectral Analysis and Time Series'', [[Academic Press]].
* {{Citation | last = Shasha | first = D. | title = High Performance Discovery in Time Series | publisher = [[Springer Science+Business Media|Springer]] | year = 2004 | isbn = 978-0-387-00857-8 }}
+
*{{Citation | last = Shasha | first = D. | title = High Performance Discovery in Time Series | publisher = [[Springer Science+Business Media|Springer]] | year = 2004 | isbn = 978-0-387-00857-8 }}
* Shumway R. H., Stoffer D. S. (2017), ''Time Series Analysis and its Applications: With R Examples (ed. 4)'', Springer, {{ISBN|978-3-319-52451-1}}
+
* Shumway R. H., Stoffer D. S. (2017), ''Time Series Analysis and its Applications: With R Examples (ed. 4)'', Springer,
 
* Weigend A. S., Gershenfeld N. A. (Eds.) (1994), ''Time Series Prediction: Forecasting the Future and Understanding the Past''. Proceedings of the NATO Advanced Research Workshop on Comparative Time Series Analysis (Santa Fe, May 1992), [[Addison-Wesley]].
 
* Weigend A. S., Gershenfeld N. A. (Eds.) (1994), ''Time Series Prediction: Forecasting the Future and Understanding the Past''. Proceedings of the NATO Advanced Research Workshop on Comparative Time Series Analysis (Santa Fe, May 1992), [[Addison-Wesley]].
* [[Norbert Wiener|Wiener, N.]] (1949), ''Extrapolation, Interpolation, and Smoothing of Stationary Time Series'', [[MIT Press]].
+
*[[Norbert Wiener|Wiener, N.]] (1949), ''Extrapolation, Interpolation, and Smoothing of Stationary Time Series'', [[MIT Press]].
 
* Woodward, W. A., Gray, H. L. & Elliott, A. C. (2012), ''Applied Time Series Analysis'', [[CRC Press]].
 
* Woodward, W. A., Gray, H. L. & Elliott, A. C. (2012), ''Applied Time Series Analysis'', [[CRC Press]].
* {{cite book|last1=Auffarth|first1=Ben|year=2021|title= Machine Learning for Time-Series with Python: Forecast, predict, and detect anomalies with state-of-the-art machine learning methods|publisher=Packt Publishing|edition=1st|isbn=978-1801819626|url=https://www.packtpub.com/product/machine-learning-for-time-series-with-python/9781801819626|access-date=5 November 2021}}
+
*{{cite book|last1=Auffarth|first1=Ben|year=2021|title= Machine Learning for Time-Series with Python: Forecast, predict, and detect anomalies with state-of-the-art machine learning methods|publisher=Packt Publishing|edition=1st|isbn=978-1801819626|url=https://www.packtpub.com/product/machine-learning-for-time-series-with-python/9781801819626|access-date=5 November 2021}}
    
*  
 
*  
第608行: 第561行:  
*  
 
*  
   −
= = 进一步阅读 = =  
+
=== 相关书籍 ===  
 
*  
 
*  
* Durbin j,Koopman s.j。(2001) ,《状态空间法时间序列分析》 ,牛津大学出版社。
+
* Durbin j,Koopman s.j。(2001) ,《状态空间法时间序列分析》 ,牛津大学出版社
 
*  
 
*  
    
*  
 
*  
   −
* Priestley, M. B.(1981) ,光谱分析与时间序列,学术出版社。
+
* Priestley, M. B.(1981) ,光谱分析与时间序列,学术出版社
 
*  
 
*  
 
* Shumway r. h. ,Stoffer d. s. (2017) ,时间序列分析及其应用: 与 R.示例(ed。4), Springer,  
 
* Shumway r. h. ,Stoffer d. s. (2017) ,时间序列分析及其应用: 与 R.示例(ed。4), Springer,  
   −
* Weigend A. S., Gershenfeld N. A.(Eds.)(1994) ,时间序列预测: 预测未来和了解过去。北约比较时间序列分析高级研究讲习班论文集(圣达菲,1992年5月) ,Addison-Wesley。《平稳时间序列的外推、插值和平滑》 ,麻省理工学院出版社。
+
* Weigend A. S., Gershenfeld N. A.(Eds.)(1994) ,时间序列预测: 预测未来和了解过去 北约比较时间序列分析高级研究讲习班论文集(圣达菲,1992年5月) ,Addison-Wesley。《平稳时间序列的外推、插值和平滑》 ,麻省理工学院出版社
* 伍德沃德,w. a. ,格雷,h. l. & 埃利奥特,a. c. (2012) ,应用时间序列分析,CRC 出版社。
+
* 伍德沃德,w. a. ,格雷,h. l. & 埃利奥特,a. c. (2012) ,应用时间序列分析,CRC 出版社
 
*
 
*
   −
==External links==
+
===外部链接===
{{Commons category}}
+
 
 
*[http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm Introduction to Time series Analysis (Engineering Statistics Handbook)] — A practical guide to Time series analysis.
 
*[http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm Introduction to Time series Analysis (Engineering Statistics Handbook)] — A practical guide to Time series analysis.
  −
  −
*Introduction to Time series Analysis (Engineering Statistics Handbook) — A practical guide to Time series analysis.
  −
  −
= = 外部链接 = =
  −
* 时间序列分析导论(工程统计手册)ー时间序列分析实用指南。
  −
  −
{{Statistics}}
  −
{{Portal bar|Mathematics}}
  −
{{Authority control}}
      
{{DEFAULTSORT:Time Series}}
 
{{DEFAULTSORT:Time Series}}
第642行: 第585行:  
[[Category:Mathematical and quantitative methods (economics)]]
 
[[Category:Mathematical and quantitative methods (economics)]]
 
[[Category:Machine learning]]
 
[[Category:Machine learning]]
  −
  −
  −
Category:Statistical data types
  −
Category:Mathematical and quantitative methods (economics)
  −
Category:Machine learning
  −
  −
类别: 统计数据类型类别: 数学和定量方法(经济学)类别: 机器学习
  −
  −
<noinclude>
  −
  −
<small>This page was moved from [[wikipedia:en:Time series]]. Its edit history can be viewed at [[时间序列分析/edithistory]]</small></noinclude>
  −
   
[[Category:待整理页面]]
 
[[Category:待整理页面]]
35

个编辑