更改

大小无更改 、 2023年7月23日 (日) 00:39
无编辑摘要
第1行: 第1行: −
'''因果涌现(causal emergence)'''是指动力系统中的一类特殊的[[涌现]]现象,即系统在宏观尺度会展现出更强的因果特性。特别的,对于此类马尔可夫动力学系统来说,在对其状态空间进行适当的粗粒化以后,所形成的宏观动力学会展现出比微观更强的因果特性,那么称该系统发生了因果涌现<ref name=":0">Hoel E P, Albantakis L, Tononi G. Quantifying causal emergence shows that macro can beat micro[J]. Proceedings of the National Academy of Sciences, 2013, 110(49): 19790-19795.</ref><ref name=":1">Hoel E P. When the map is better than the territory[J]. Entropy, 2017, 19(5): 188.</ref>。马尔可夫动力学系统是指系统在某一时刻的状态仅仅依赖于系统上一时刻所处的状态,而与更早的状态无关。这里的粗粒化是指对系统的状态空间进行约简的一种方法,它往往可以表示为一个具有降维特征的函数映射。所谓的宏观动力学是指在被粗粒化后的新状态空间上的随附的(supervenes)动力学,它完全取决于微观的动力学和粗粒化方式。
+
'''因果涌现(causal emergence)'''是指动力系统中的一类特殊的[[涌现]]现象,即系统在宏观尺度会展现出更强的因果特性。特别的,对于一类马尔可夫动力学系统来说,在对其状态空间进行适当的粗粒化以后,所形成的宏观动力学会展现出比微观更强的因果特性,那么称该系统发生了因果涌现<ref name=":0">Hoel E P, Albantakis L, Tononi G. Quantifying causal emergence shows that macro can beat micro[J]. Proceedings of the National Academy of Sciences, 2013, 110(49): 19790-19795.</ref><ref name=":1">Hoel E P. When the map is better than the territory[J]. Entropy, 2017, 19(5): 188.</ref>。马尔可夫动力学系统是指系统在某一时刻的状态仅仅依赖于系统上一时刻所处的状态,而与更早的状态无关。这里的粗粒化是指对系统的状态空间进行约简的一种方法,它往往可以表示为一个具有降维特征的函数映射。所谓的宏观动力学是指在被粗粒化后的新状态空间上的随附的(supervenes)动力学,它完全取决于微观的动力学和粗粒化方式。
    
==历史==
 
==历史==
第34行: 第34行:  
|}
 
|}
   −
这是一个离散状态离散(<math>S=\{a,b,c\}</math>)时间的马尔可夫动力学中的状态概率转移表,其中每一行、列都对应一个状态,第i行第j列表示状
+
这是一个离散时间离散(<math>S=\{a,b,c\}</math>)状态的马尔可夫动力学中的状态概率转移表,其中每一行、列都对应一个状态,第i行第j列表示状
    
态从第i个状态转移到第j个状态的概率。我们也可以等价地用状态转移图来表示。
 
态从第i个状态转移到第j个状态的概率。我们也可以等价地用状态转移图来表示。
138

个编辑