更改

删除12字节 、 2023年7月23日 (日) 01:55
第107行: 第107行:  
前面已经介绍了一些通过因果关系和其他信息理论概念来量化涌现的工作。然而,在实际应用中,往往只能收集到观测数据,无法得到系统的真实动力学。因此,从可观测数据中辨别系统中因果涌现的发生是一个更为重要的问题。此外,在因果涌现的识别问题中往往希望寻找一个最优的宏观尺度,使其有效信息达到最大值,此时的系统具有最大因果力,并且能以最可靠、最有效的方式预测未来的状态。下面介绍两种因果涌现的识别方法,包括基于信息分解和神经信息压缩方法。
 
前面已经介绍了一些通过因果关系和其他信息理论概念来量化涌现的工作。然而,在实际应用中,往往只能收集到观测数据,无法得到系统的真实动力学。因此,从可观测数据中辨别系统中因果涌现的发生是一个更为重要的问题。此外,在因果涌现的识别问题中往往希望寻找一个最优的宏观尺度,使其有效信息达到最大值,此时的系统具有最大因果力,并且能以最可靠、最有效的方式预测未来的状态。下面介绍两种因果涌现的识别方法,包括基于信息分解和神经信息压缩方法。
   −
====因果涌现信息分解方法====
+
====信息分解方法====
 
Rosas虽然给出因果涌现的严格定义,但在<math>\varphi ID </math>中使用的数学公式很复杂,同时计算要求很高,难以将该方法应用于实际系统。因此,Rosas等绕开特有信息和协同信息的计算<ref name=":5" />,提出一个判定因果涌现发生的充分条件,基于互信息提出三个新指标,<math>\mathrm{\Psi} </math> ,<math>\mathrm{\Delta} </math> 和<math>\mathrm{\Gamma} </math>用于识别系统中的因果涌现,三种指标的具体计算公式如下所示:
 
Rosas虽然给出因果涌现的严格定义,但在<math>\varphi ID </math>中使用的数学公式很复杂,同时计算要求很高,难以将该方法应用于实际系统。因此,Rosas等绕开特有信息和协同信息的计算<ref name=":5" />,提出一个判定因果涌现发生的充分条件,基于互信息提出三个新指标,<math>\mathrm{\Psi} </math> ,<math>\mathrm{\Delta} </math> 和<math>\mathrm{\Gamma} </math>用于识别系统中的因果涌现,三种指标的具体计算公式如下所示:
  
138

个编辑