粗粒化复杂系统的策略,包括手动设计的重整化方法,传统的降维技术,以及基于机器学习的粗粒化或重整化方法。为了自动发现优化因果出现的粗粒度策略,张江和刘凯威引入了一种机器学习框架,称为神经信息挤压器(NIS),采用可逆神经网络。该框架有助于自动提取有效的粗粒度策略和宏观状态动力学,从而能够从不同的时间序列数据中直接识别因果关系。随后,研究团队提出了增强的NIS+框架,该框架将通过有效信息最大化的粗粒度优化集成到机器学习中,成功地解决了识别数据中因果出现的挑战。尽管如此,基于机器学习的方法在很大程度上依赖于数据的充分性和神经网络训练的水平。虽然它们可以提供数字解决方案,但缺乏评估模型训练质量和结果指标可靠性的基本事实。 | 粗粒化复杂系统的策略,包括手动设计的重整化方法,传统的降维技术,以及基于机器学习的粗粒化或重整化方法。为了自动发现优化因果出现的粗粒度策略,张江和刘凯威引入了一种机器学习框架,称为神经信息挤压器(NIS),采用可逆神经网络。该框架有助于自动提取有效的粗粒度策略和宏观状态动力学,从而能够从不同的时间序列数据中直接识别因果关系。随后,研究团队提出了增强的NIS+框架,该框架将通过有效信息最大化的粗粒度优化集成到机器学习中,成功地解决了识别数据中因果出现的挑战。尽管如此,基于机器学习的方法在很大程度上依赖于数据的充分性和神经网络训练的水平。虽然它们可以提供数字解决方案,但缺乏评估模型训练质量和结果指标可靠性的基本事实。 |