更改

第5行: 第5行:  
现实中诸多复杂系统的动力学模型都可以转化成迭代系统来表达系统的演化,比如粒子的随机游走、导热体热量的耗散以及空间中的旋转模型,虽然时间是离散的,但是其分布状态空间属于连续空间,而不是马尔科夫链或者复杂网络一样可以将状态确定在有限的状态点位上,整个迭代系统自身的因果效应也需要相关的指标来针对性的进行量化。为了解决以上问题,随机迭代系统的因果涌现作为一个精确的理论框架,可被应用于研究具有连续状态空间和高斯噪声的线性随机迭代系统中的因果涌现。该框架不仅可以给出线性线性随机迭代系统有效信息和因果涌现的解析表达式,还可以确定最佳线性粗粒化策略,当粗粒化消除的维度平均不确定性有上限时,该策略可最大限度地提高因果涌现的程度。解析表达式本身可以拓展到一般动力学的空间上,但是其因果涌现的大小和最优粗粒化策略会受到时间和迭代函数本身的影响。
 
现实中诸多复杂系统的动力学模型都可以转化成迭代系统来表达系统的演化,比如粒子的随机游走、导热体热量的耗散以及空间中的旋转模型,虽然时间是离散的,但是其分布状态空间属于连续空间,而不是马尔科夫链或者复杂网络一样可以将状态确定在有限的状态点位上,整个迭代系统自身的因果效应也需要相关的指标来针对性的进行量化。为了解决以上问题,随机迭代系统的因果涌现作为一个精确的理论框架,可被应用于研究具有连续状态空间和高斯噪声的线性随机迭代系统中的因果涌现。该框架不仅可以给出线性线性随机迭代系统有效信息和因果涌现的解析表达式,还可以确定最佳线性粗粒化策略,当粗粒化消除的维度平均不确定性有上限时,该策略可最大限度地提高因果涌现的程度。解析表达式本身可以拓展到一般动力学的空间上,但是其因果涌现的大小和最优粗粒化策略会受到时间和迭代函数本身的影响。
   −
== 历史渊源 ==
+
== 历史 ==
 
Erik Hoel提出了因果出现的最初定量理论,该理论建立在有效信息(<math>EI\equiv I(Y;X|do(X\sim U))</math>)的基础上,原始框架仅限于量化时域和状态空间中的离散马尔可夫链。为了在连续空间中扩展因果涌现理论,Hoel又提出了因果几何理论,其中他们设计了一种计算连续状态空间上函数映射中有效信息的方法。尽管如此,该理论只探索了一般的函数映射,而忽略了多步动力学演化,使其不适用于连续状态空间中的动力学系统。同时Erik Hoel的理论还有一个共同问题就是粗粒化策略必须预先给定,而缺少优化方法。
 
Erik Hoel提出了因果出现的最初定量理论,该理论建立在有效信息(<math>EI\equiv I(Y;X|do(X\sim U))</math>)的基础上,原始框架仅限于量化时域和状态空间中的离散马尔可夫链。为了在连续空间中扩展因果涌现理论,Hoel又提出了因果几何理论,其中他们设计了一种计算连续状态空间上函数映射中有效信息的方法。尽管如此,该理论只探索了一般的函数映射,而忽略了多步动力学演化,使其不适用于连续状态空间中的动力学系统。同时Erik Hoel的理论还有一个共同问题就是粗粒化策略必须预先给定,而缺少优化方法。
  
225

个编辑