更改

添加67字节 、 2024年6月29日 (星期六)
第7行: 第7行:  
如果通过合适的粗粒化策略使得系统在宏观尺度能够展现出比它在微观尺度上具有更强的因果特性的时候,这就发生了因果涌现。其中系统因果关系的强度揭示其未来状态受当前状态影响的程度。值得注意的是,目前研究因果涌现都是建立在马尔可夫动力学系统上,同时也需要使用粗粒化函数。
 
如果通过合适的粗粒化策略使得系统在宏观尺度能够展现出比它在微观尺度上具有更强的因果特性的时候,这就发生了因果涌现。其中系统因果关系的强度揭示其未来状态受当前状态影响的程度。值得注意的是,目前研究因果涌现都是建立在马尔可夫动力学系统上,同时也需要使用粗粒化函数。
   −
===马尔可夫动力学===
+
===状态空间===
 +
 
 +
====马尔可夫动力学(状态转移矩阵)====
 
马尔可夫动力学是指系统的下一时刻状态只依赖于系统上一时刻的状态,并且与再之前的状态无关。马尔可夫动力学可以具体分为离散时间、连续时间,离散状态、连续状态,以及它们的组合等多种形式。例如,表中概率转移矩阵就定义了一个离散时间、离散状态上的马尔可夫动力学<math>P(S_{t+1}|S_{t})</math>,<math>S_t</math>和<math>S_{t+1}</math>分别表示<math>t</math>时刻和<math>t+1</math>时刻的状态:
 
马尔可夫动力学是指系统的下一时刻状态只依赖于系统上一时刻的状态,并且与再之前的状态无关。马尔可夫动力学可以具体分为离散时间、连续时间,离散状态、连续状态,以及它们的组合等多种形式。例如,表中概率转移矩阵就定义了一个离散时间、离散状态上的马尔可夫动力学<math>P(S_{t+1}|S_{t})</math>,<math>S_t</math>和<math>S_{t+1}</math>分别表示<math>t</math>时刻和<math>t+1</math>时刻的状态:
   第50行: 第52行:  
===粗粒化===
 
===粗粒化===
 
粗粒化是一种通过将系统组件分组为更大、变化更慢的单元来简化系统描述的过程,它通常用于确定系统的基本特征,这些特征决定了系统的宏观行为,而不受微观尺度相互作用等细节的影响。对于复杂系统来说,粗粒化一般包含了节点(单元)的合并,以及宏观状态的计算两个步骤。粗粒化策略可以将一组微观状态映射到一个特定的宏观状态。此外,人们往往会混用粗粒化与重整化<ref>K. G. Wilson, J. Kogut, The renormalization group and the expansion, Physics reports 12 (2) (1974) 75–199.</ref><ref>J. C. Collins, Renormalization, Cambridge university press, 2023.</ref>,确实两者存在很多共同之处,如两者都是对系统进行更加宏观尺度的描述。但是两者也存在区别,粗粒化一般都是对系统的状态进行操作,而重整化一般针对的是系统动力学、配分函数或者规则。粗粒化在不同领域有着不同的表述:下采样、池化等。
 
粗粒化是一种通过将系统组件分组为更大、变化更慢的单元来简化系统描述的过程,它通常用于确定系统的基本特征,这些特征决定了系统的宏观行为,而不受微观尺度相互作用等细节的影响。对于复杂系统来说,粗粒化一般包含了节点(单元)的合并,以及宏观状态的计算两个步骤。粗粒化策略可以将一组微观状态映射到一个特定的宏观状态。此外,人们往往会混用粗粒化与重整化<ref>K. G. Wilson, J. Kogut, The renormalization group and the expansion, Physics reports 12 (2) (1974) 75–199.</ref><ref>J. C. Collins, Renormalization, Cambridge university press, 2023.</ref>,确实两者存在很多共同之处,如两者都是对系统进行更加宏观尺度的描述。但是两者也存在区别,粗粒化一般都是对系统的状态进行操作,而重整化一般针对的是系统动力学、配分函数或者规则。粗粒化在不同领域有着不同的表述:下采样、池化等。
 +
 +
 +
===变量空间===
    
==因果涌现的量化==
 
==因果涌现的量化==
2,437

个编辑