| 涌现一直是复杂系统中的一个重要特性和研究对象,是许多关于复杂性本质以及宏微观组织之间关系讨论的中心概念<ref>Meehl P E, Sellars W. The concept of emergence[J]. Minnesota studies in the philosophy of science, 1956, 1239-252.</ref><ref>Holland J H. Emergence: From chaos to order[M]. OUP Oxford, 2000.</ref>。涌现可以简单理解为整体大于部分之和,即整体上展现出构成它的个体所不具备的新特性<ref>Anderson P W. More is different: broken symmetry and the nature of the hierarchical structure of science[J]. Science, 1972, 177(4047): 393-396.</ref>。以往对涌现有很多定性的研究,如对涌现的分类等<ref name=":2">Fromm J. Types and forms of emergence[J]. arXiv preprint nlin/0506028, 2005.</ref>,可以将涌现分为强涌现与弱涌现,然而却无法定量的刻画涌现的发生。但是随着近年来因果科学理论得到了进一步的发展,使得可以用数学框架来量化因果,因果描述的是一个动力学过程的因果效应<ref>Pearl J. Causality[M]. Cambridge university press, 2009.</ref><ref>Granger C W. Investigating causal relations by econometric models and cross-spectral methods[J]. Econometrica: journal of the Econometric Society, 1969, 424-438.</ref><ref>Pearl J. Models, reasoning and inference[J]. Cambridge, UK: CambridgeUniversityPress, 2000, 19(2).</ref>。同时涌现和因果也是相互联系的:一方面,涌现是复杂系统中各组成部分之间复杂的非线性相互作用的因果效应;另一方面,涌现特性也会对复杂系统中的个体产生因果关系。因此,可以借助因果来定量刻画涌现的发生。2013美国理论神经生物学家[[Erik hoel|Erik Hoel]]尝试将因果引入涌现的衡量,提出了因果涌现这一概念,并且使用[[有效信息]](Effective Information,简称EI)来量化系统动力学的因果性强弱<ref name=":0" /><ref name=":1" />。因果涌现很好的刻画了系统宏观和微观状态之间的区别与联系,同时把人工智能中的因果和复杂系统中的涌现这两个核心概念结合起来,因果涌现也为学者回答一系列的哲学问题提供一个定量化的视角。比如,可以借助因果涌现框架讨论生命系统或者社会系统中的自上而下的因果等特性。这里的自上而下因果指的是向下因果<ref name=":2" />,表示存在宏观到微观的因果效应。例如,壁虎断尾现象,当遇到危险时壁虎不征求尾巴的建议直接将自己的尾巴断掉,这里整体是因,尾巴是果,那么就存在一个整体指向个体的因果力。 | | 涌现一直是复杂系统中的一个重要特性和研究对象,是许多关于复杂性本质以及宏微观组织之间关系讨论的中心概念<ref>Meehl P E, Sellars W. The concept of emergence[J]. Minnesota studies in the philosophy of science, 1956, 1239-252.</ref><ref>Holland J H. Emergence: From chaos to order[M]. OUP Oxford, 2000.</ref>。涌现可以简单理解为整体大于部分之和,即整体上展现出构成它的个体所不具备的新特性<ref>Anderson P W. More is different: broken symmetry and the nature of the hierarchical structure of science[J]. Science, 1972, 177(4047): 393-396.</ref>。以往对涌现有很多定性的研究,如对涌现的分类等<ref name=":2">Fromm J. Types and forms of emergence[J]. arXiv preprint nlin/0506028, 2005.</ref>,可以将涌现分为强涌现与弱涌现,然而却无法定量的刻画涌现的发生。但是随着近年来因果科学理论得到了进一步的发展,使得可以用数学框架来量化因果,因果描述的是一个动力学过程的因果效应<ref>Pearl J. Causality[M]. Cambridge university press, 2009.</ref><ref>Granger C W. Investigating causal relations by econometric models and cross-spectral methods[J]. Econometrica: journal of the Econometric Society, 1969, 424-438.</ref><ref>Pearl J. Models, reasoning and inference[J]. Cambridge, UK: CambridgeUniversityPress, 2000, 19(2).</ref>。同时涌现和因果也是相互联系的:一方面,涌现是复杂系统中各组成部分之间复杂的非线性相互作用的因果效应;另一方面,涌现特性也会对复杂系统中的个体产生因果关系。因此,可以借助因果来定量刻画涌现的发生。2013美国理论神经生物学家[[Erik hoel|Erik Hoel]]尝试将因果引入涌现的衡量,提出了因果涌现这一概念,并且使用[[有效信息]](Effective Information,简称EI)来量化系统动力学的因果性强弱<ref name=":0" /><ref name=":1" />。因果涌现很好的刻画了系统宏观和微观状态之间的区别与联系,同时把人工智能中的因果和复杂系统中的涌现这两个核心概念结合起来,因果涌现也为学者回答一系列的哲学问题提供一个定量化的视角。比如,可以借助因果涌现框架讨论生命系统或者社会系统中的自上而下的因果等特性。这里的自上而下因果指的是向下因果<ref name=":2" />,表示存在宏观到微观的因果效应。例如,壁虎断尾现象,当遇到危险时壁虎不征求尾巴的建议直接将自己的尾巴断掉,这里整体是因,尾巴是果,那么就存在一个整体指向个体的因果力。 |
| + | Hoel等人<ref name=":0" />提出的因果涌现理论之前,已经有一些相关的工作引入与因果涌现理论非常相似的思想。例如,Crutchfield等<ref name=":3">J. P. Crutchfield, K. Young, Inferring statistical complexity, Physical review letters 63 (2) (1989) 105.</ref>提出的计算力学理论考虑了因果状态,该方法是对状态空间的划分。而Seth等人则提出了G-emergence理论<ref name=":4">A. K. Seth, Measuring emergence via nonlinear granger causality., in: alife, Vol. 2008, 2008, pp. 545–552.</ref>利用格兰杰因果关系来量化涌现。 |
| + | 该方法没有给出涌现的明确定义和定量理论,随后一些研究人员进一步推进了计算力学的发展,Shalizi等<ref>C. R. Shalizi, C. Moore, What is a macrostate? subjective observations and objective dynamics, arXiv preprint cond-mat/0303625 (2003).</ref>在自己的工作中讨论计算力学与涌现的关系,同时在另一个工作中,Shalizi等<ref>C. R. Shalizi, Causal architecture, complexity and self-organization in time series and cellular automata, The University of Wisconsin-Madison, 2001.</ref>还将计算力学应用于元胞自动机,并且在更高的描述水平上发现涌现的“粒子”。 |