更改

删除4,006字节 、 2024年6月30日 (星期日)
第234行: 第234行:  
下图展示1个含有4个节点的布尔网络例子,每个节点有0和1两种状态,每个节点与其中两个节点相连,遵循相同的微观动力学机制(a图),因此,一共含有十六个微观状态,可以得到一个<math>16\times16 </math>的状态转移矩阵(c图),然后给定分组方式,如将A和B进行合并,C和D进行合并(b图),同时给定微观状态到宏观状态的映射函数(d图),就可以得到新的宏观动力学机制,根据这个机制就可以得到宏观网络的状态转移矩阵(e图),通过对比发现宏观动力学的有效信息大于微观动力学的有效信息(<math>EI(S_M\ )>EI(S_m\ ) </math>),系统发生了因果涌现。
 
下图展示1个含有4个节点的布尔网络例子,每个节点有0和1两种状态,每个节点与其中两个节点相连,遵循相同的微观动力学机制(a图),因此,一共含有十六个微观状态,可以得到一个<math>16\times16 </math>的状态转移矩阵(c图),然后给定分组方式,如将A和B进行合并,C和D进行合并(b图),同时给定微观状态到宏观状态的映射函数(d图),就可以得到新的宏观动力学机制,根据这个机制就可以得到宏观网络的状态转移矩阵(e图),通过对比发现宏观动力学的有效信息大于微观动力学的有效信息(<math>EI(S_M\ )>EI(S_m\ ) </math>),系统发生了因果涌现。
 
[[文件:含有4个节点的布尔网络.png|居中|677x677像素|离散布尔网络上的因果涌现|替代=含有4个节点布尔网络的因果涌现|缩略图]]
 
[[文件:含有4个节点的布尔网络.png|居中|677x677像素|离散布尔网络上的因果涌现|替代=含有4个节点布尔网络的因果涌现|缩略图]]
时域空间上的因果涌现
  −
除了对空间进行粗粒化,还可以对时间进行粗粒化如下图所示,考虑两阶马尔可夫动力学,输入为两个时刻<math>t-2 </math>和<math>t-1 </math>的状态,输出为<math>t </math>和<math>t+1 </math>的状态,可以通过<math>EI </math>计算二阶微观动力学的有效信息为<math>1.38bits </math>,然后通过对时间状态分组,令<math>\alpha=\left \{ A_t,A_{t+1} \right \} </math>,<math>\beta=\left \{ B_t,B_{t+1} \right \} </math>, 同时采用与离散布尔网络相同的映射函数,可以得到完全确定且非简并的宏观动力学系统,其有效信息为<math>2bits </math>,同样实现“宏观打败微观”的效果。
  −
[[文件:时间粗粒化.png|居中|382x382像素|时域空间上的因果涌现|替代=时间粗粒化|缩略图]]
  −
  −
连续空间上的因果涌现
  −
上述的三个例子都是针对离散的状态系统的因果涌现衡量,Varley尝试将连续系统转换成离散的状态转移图进行比较<ref>Varley T F, Hoel E. Emergence as the conversion of information: A unifying theory[J]. Philosophical Transactions of the Royal Society A, 2022, 380(2227): 20210150.</ref>。作者使用OPN(有序划分网络)方法来离散化Rossler吸引子来创建有限数量的状态以及定义一个状态到另一个状态的转移概率。Rossler吸引子的动力学如下所示:
  −
  −
<math>\frac{d x}{d t}=-y-z </math>
  −
  −
<math>\frac{d y}{d t}=x+a y </math>
  −
  −
<math>\frac{d z}{d t}=b+z(x-c) </math>
  −
  −
设定<math>b=2 </math>,<math>c=4 </math>,<math>a\in\left \{ 0.37,0.43 \right \} </math>间隔为0.001,这里只是基于<math>x </math>的时间序列建立状态网络。OPN方法具体操作如下:输入时间序列<math>x=\left\{x_1, x_2, \ldots, x_n\right\} </math>,需要将输入嵌入到一个滞后时间为<math>\tau </math>的<math>D </math>维空间中,
  −
其中<math>v_i=\left\{x_i, x_{i+\tau},\ldots  x_{i+(D-1) \tau}\right\} </math>,需要根据<math>v_i </math>中的数值进行降序排序重新编号为<math>s_i=\left\{\pi_1,\pi_2, \cdots \pi_D\right\} </math>, 其中,<math>\pi_j \in\{1,2, \ldots, D\} </math>,节点序列<math>s </math>表示为<math>s=\left\{s_1, s_2, \ldots, s_{n-D+1}\right\} </math>,序列<math>s </math>中不重复的向量构成最终的状态图中的节点,节点<math>i </math>指向节点<math>j </math>的权重表示为<math>s </math>序列中状态<math>s_i </math>后面为状态<math>s_j </math>的次数。对边权进行归一化就可以得到节点间的状态转移概率,然后基于Hoel等人提出网络的有效信息度量方法进行实验,比较系统的确定性、简并性、有效性等指标随着参数<math>a </math>的变化,如下图所示。
  −
[[文件:指标变化.png|居中|627x627像素|替代=网络的有效信息度量方法|系统的确定性、简并性以及有效系数随参数的变化|缩略图]]
  −
通过实验比较发现,随着参数<math>a </math>的增大,确定性首先经历了短暂的上升,随后在第一次分叉后立即大幅下降,然后逐渐上升在周期加倍级联开始前达到局部峰值,过了该点,确定性急剧崩溃。一般来说,混沌动力学与较低水平的确定性呈相关关系。此外,简并性和有效信息的曲线变化和确定性曲线变化保持一致。然而,对于因果涌现曲线的变化没有什么有趣现象,它在一个相对恒定的值附近往复振荡,其中存在一个明显的例外,它在周期加倍级联开始时暴跌,如下图所示。
  −
[[文件:恒定值.png|居中|420x420像素|因果涌现随参数的变化|替代=参数恒定值震荡|缩略图]]
  −
Pavel Chvykov和Erik Hoel等<ref>P. Chvykov, E. Hoel, Causal geometry, Entropy 23 (1) (2020) 24.</ref>也将因果涌现框架扩展到连续系统,并且假设不确定性是添加到确定性函数中的干扰,研究人员推导出连续系统有效信息的近似形式来衡量因果涌现的发生。
      
==应用==
 
==应用==
1,271

个编辑