更改

添加312字节 、 2024年6月30日 (星期日)
第274行: 第274行:  
在复杂系统中,由于微观状态往往存在噪音,需要将微观状态进行粗粒化得到噪音更小的宏观状态,使得宏观动力学的因果性更强。同样对于因果模型也一样,由于原始模型过于复杂,或者计算资源受限,所以往往需要得到更加抽象的因果模型,并且保证抽象的模型尽可能保持原始模型的因果机制,因果模型抽象讨论的也是因果关系与模型抽象(可以看成粗粒化过程)之间的相互作用<ref>S. Beckers, F. Eberhardt, J. Y. Halpern, Approximate causal abstractions, in: Uncertainty in artificial intelligence, PMLR, 2020, pp. 606–615.</ref>。因此,因果涌现识别与因果模型抽象有很多相似之处,可以把原始的因果机制理解为微观动力学,抽象出来的机制理解为宏观动力学。在神经信息压缩框架中(NIS),对粗粒化策略和宏观动力学进行了限制,要求宏观动力学的微观预测误差要足够小以排除平凡解。这个要求也类似于因果模型抽象中希望抽象后的因果模型与原始模型的距离要尽可能相近。但是两者也存在一些不同:1)因果涌现中是对状态或数据进行粗粒化,而因果模型抽象是对模型进行操作;2)因果模型抽象中考虑混肴因子,然而却被因果涌现的讨论忽略。
 
在复杂系统中,由于微观状态往往存在噪音,需要将微观状态进行粗粒化得到噪音更小的宏观状态,使得宏观动力学的因果性更强。同样对于因果模型也一样,由于原始模型过于复杂,或者计算资源受限,所以往往需要得到更加抽象的因果模型,并且保证抽象的模型尽可能保持原始模型的因果机制,因果模型抽象讨论的也是因果关系与模型抽象(可以看成粗粒化过程)之间的相互作用<ref>S. Beckers, F. Eberhardt, J. Y. Halpern, Approximate causal abstractions, in: Uncertainty in artificial intelligence, PMLR, 2020, pp. 606–615.</ref>。因此,因果涌现识别与因果模型抽象有很多相似之处,可以把原始的因果机制理解为微观动力学,抽象出来的机制理解为宏观动力学。在神经信息压缩框架中(NIS),对粗粒化策略和宏观动力学进行了限制,要求宏观动力学的微观预测误差要足够小以排除平凡解。这个要求也类似于因果模型抽象中希望抽象后的因果模型与原始模型的距离要尽可能相近。但是两者也存在一些不同:1)因果涌现中是对状态或数据进行粗粒化,而因果模型抽象是对模型进行操作;2)因果模型抽象中考虑混肴因子,然而却被因果涌现的讨论忽略。
 
===模型约简===
 
===模型约简===
模型约简,就是要将高维的复杂系统动力学进行化简、降维,用低维的动力学来描述动力系统的演化规律,这一过程其实就是因果涌现研究中的粗粒化过程。将对大尺度动力系统的近似方法主要有两大类,即基于奇异值分解的近似方法和基于Krylov的近似方法。前者基于奇异值分解,后者基于矩匹配。虽然前者具有许多理想的性质,包括误差界,但它不能应用于高复杂度的系统。另一方面,后者的优势在于它可以迭代实现,因此适用于高复杂度系统。将这两个族的最佳属性相结合的努力导致了第三类近似方法,称为SVD/Krylov。两种方法都是基于粗粒化前后输出函数的误差损失函数。
+
模型约简,就是要将高维的复杂系统动力学模型进行化简、降维,用低维的动力学来描述动力系统的演化规律,这一过程其实就是因果涌现研究中的粗粒化过程。将对大尺度动力系统的近似方法主要有两大类,即基于奇异值分解的近似方法和基于Krylov的近似方法。前者基于奇异值分解,后者基于矩匹配。虽然前者具有许多理想的性质,包括误差界,但它不能应用于高复杂度的系统。另一方面,后者的优势在于它可以迭代实现,因此适用于高复杂度系统。将这两个族的最佳属性相结合的努力导致了第三类近似方法,称为SVD/Krylov。两种方法都是基于粗粒化前后输出函数的误差损失函数。
    
所谓的大尺度动力学一般情况下,如果时间是连续的,就可以表示为
 
所谓的大尺度动力学一般情况下,如果时间是连续的,就可以表示为
第286行: 第286行:  
<math>x_{t+1}=f(x_t,u_t), z_t=g(x_t,u_t) </math>
 
<math>x_{t+1}=f(x_t,u_t), z_t=g(x_t,u_t) </math>
   −
对大尺度动力学进行约简,需要先对变量进行线性映射<math>y=Wx, W\in\mathcal{R}^{k\times n}, k<n </math>
+
对大尺度动力学进行约简,需要先对变量进行线性映射<math>y=Wx, W\in\mathcal{R}^{k\times n}, k<n </math>。这样就可以对我们动力系统模型进行简化,得到约简后的系统
 +
 
 +
<math>\frac{dy}{dt}=Wf(Vx,u), \hat{z}=g(Vx,u) </math>
 +
 
 +
 +
 
 +
<math>y_{t+1}=Wf(Vy_t,u_t), \hat{z}_t=g(Vx_t,u_t) </math>
 +
 
 +
其中<math>V\in\mathcal{R}^{n\times k}, WV=I_n </math>,寻找合适的W也是以往研究的关键。
    
===动力学模式分解===
 
===动力学模式分解===
225

个编辑