更改

添加29字节 、 2024年7月8日 (星期一)
第2行: 第2行:     
==历史==
 
==历史==
涌现一直是复杂系统中的一个重要特性和研究对象,是许多关于复杂性本质以及宏微观组织之间关系讨论的中心概念<ref>Meehl P E, Sellars W. The concept of emergence[J]. Minnesota studies in the philosophy of science, 1956, 1239-252.</ref><ref>Holland J H. Emergence: From chaos to order[M]. OUP Oxford, 2000.</ref>。涌现可以简单理解为整体大于部分之和,即整体上展现出构成它的个体所不具备的新特性<ref>Anderson P W. More is different: broken symmetry and the nature of the hierarchical structure of science[J]. Science, 1972, 177(4047): 393-396.</ref>。尽管在各个领域都被指出存在涌现的现象,如鸟类的群体行为,大脑中的意识形成,以及大语言模型的涌现能力,但目前还没有对这一现象的统一理解。以往对涌现有很多定性的研究,如 Bedau et al对涌现进行了分类,可以将涌现分为名义涌现、弱涌现与强涌现。名义涌现可以理解为能被宏观层级的模式或过程所拥有,但不能被其微观层级的组件所拥有的属性。弱涌现是指宏观层面的属性或过程是通过单个组件之间以复杂的方式相互作用产生的,由于计算不可约性的原理,它们不能轻易地简化为微观层面的属性。对于弱涌现来说,其模式产生的原因可能来自微观和宏观两个层面。因此,涌现的因果关系可能与微观因果关系并存。而对于强涌现来说存在很多的争论,它指的是宏观层面的属性,原则上不能简化为微观层面的属性,包括个体之间的相互作用。此外,Jochen Fromm进一步将强涌现解释为向下因果的因果效应。考虑一个包含三个不同尺度的系统:微观、介观和宏观。向下因果关系是指从宏观层面向介观层面或从介观层面向微观层面的因果力。然而,关于向下因果关系本身的概念存在许多争议。
     −
虽然有了涌现的定性分类,然而却无法定量的刻画涌现的发生。早期已经有一些相关的工作尝试对涌现进行定量的分析。例如,Crutchfield等<ref name=":3">J. P. Crutchfield, K. Young, Inferring statistical complexity, Physical review letters 63 (2) (1989) 105.</ref>提出的计算力学理论考虑了因果状态,该方法是对状态空间的划分。而Seth等人则提出了G-emergence理论<ref name=":4">A. K. Seth, Measuring emergence via nonlinear granger causality., in: alife, Vol. 2008, 2008, pp. 545–552.</ref>利用格兰杰因果关系来量化涌现。具体来说,计算力学理论试图用定量的框架来表述涌现的因果关系,希望从一个随机过程的观测中构造一个最小的因果模型,从而来产生观测的时间序列<ref name=":3" />。其中随机过程可以用<math>\overleftrightarrow{s}</math>表示,基于时间<math>t</math>可以将随机过程分为两个部分,时间前和时间后的过程,<math>\overleftarrow{s_t}</math>和<math>\overrightarrow{s_t}</math>,当这个过程是平稳过程时,可以去掉时间。因此,可以将所有可能的历史过程<math>\overleftarrow{s_t}</math>形成的集合记作<math> \overleftarrow{S}</math>,所有未来的过程形成的集合记作<math> \overrightarrow{S}</math>。可以将<math>\overleftarrow{S}</math>分解为相互排斥又联合全面的子集,形成的集合记为<math>\mathcal{R}</math>,<math>R \in \mathcal{R}</math>中的任意子集可以看作是一个状态,定义一个分解函数<math>\eta:S→\mathcal{R}</math>。此外,定义了因果等价的概念,如果<math>P\left ( \overrightarrow{s}|\overleftarrow{s}\right )=P\left ( \overrightarrow{s}|{\overleftarrow{s}}'\right )</math>,则<math>\overleftarrow{s}</math>和<math>{\overleftarrow{s}}'</math>(表示<math>\overleftarrow{s}</math>的子集)是因果等价的。将历史<math>\overleftarrow{s_t}</math>的所有因果状态定义为<math>\epsilon \left ( \overleftarrow{s} \right )</math>,将两个因果状态<math>S_i</math>和<math>S_j</math>之间的因果转移概率记为<math>T_{ij}^{\left ( s \right )}</math>,一个随机过程的<math>\epsilon-machine</math>被定义为有序对<math>\left \{ \epsilon,T \right \}</math>,是一种模式发现机器,其中<math>\epsilon</math>是因果状态函数, <math>T</math>是通过<math>\epsilon</math>定义的状态转移矩阵的集合。通过证明<math>\epsilon-machine</math>具有最大程度的预测性和最小程度的随机性这两个重要特性验证了它在某种意义上是最优的。但是方法没有给出涌现的明确定义和定量理论,随后一些研究人员进一步推进了计算力学的发展,Shalizi等<ref>C. R. Shalizi, C. Moore, What is a macrostate? subjective observations and objective dynamics, arXiv preprint cond-mat/0303625 (2003).</ref>在自己的工作中讨论计算力学与涌现的关系,同时在另一个工作中,Shalizi等<ref>C. R. Shalizi, Causal architecture, complexity and self-organization in time series and cellular automata, The University of Wisconsin-Madison, 2001.</ref>还将计算力学应用于元胞自动机,并且在更高的描述水平上发现涌现的“粒子”。而G-emergence理论是Seth于2008年提出的最早对涌现进行定量量化的研究之一<ref name=":4" />,基本思想是用非线性格兰杰因果来量化复杂系统中的弱涌现。具体来说,使用二元自回归模型进行预测,当只存在两个变量A和B时,自回归模型存在两个等式,每个等式对应其中一个变量每个时刻值的构成,每个变量的当前时刻值都是由自身变量和另外一个变量在滞后时间范围内的变量以及残差项构成,残差可以理解为预测误差,残差可以用来衡量格兰杰因果(G-causality)的因果效应程度。B作为A的格兰杰因(G-cause)的程度通过两个残差方差之比的对数来计算,其中一个是在省略B的所有项时A的自回归模型的残差,另一个是全预测模型的残差。此外,作者还定义了G-autonomous,表示一个时间序列的过去值可以帮助预测自身的未来值。G-autonomous的程度可以用类似量化格兰杰因果的方法来测量。
+
 
 +
===涌现===
 +
涌现一直是复杂系统中的一个重要特性和研究对象,是许多关于复杂性本质以及宏微观组织之间关系讨论的中心概念<ref>Meehl P E, Sellars W. The concept of emergence[J]. Minnesota studies in the philosophy of science, 1956, 1239-252.</ref><ref>Holland J H. Emergence: From chaos to order[M]. OUP Oxford, 2000.</ref>。涌现可以简单理解为整体大于部分之和,即整体上展现出构成它的个体所不具备的新特性<ref>Anderson P W. More is different: broken symmetry and the nature of the hierarchical structure of science[J]. Science, 1972, 177(4047): 393-396.</ref>。尽管在各个领域都被指出存在涌现的现象[4,59],如鸟类的群体行为[60],大脑中的意识形成,以及大语言模型的涌现能力[7],但目前还没有对这一现象的统一理解。以往对涌现有很多定性的研究,如 Bedau et al[10,65]对涌现进行了分类,可以将涌现分为名义涌现[69,70]、弱涌现[10,71]与强涌现[17,72]。名义涌现可以理解为能被宏观层级的模式或过程所拥有,但不能被其微观层级的组件所拥有的属性[69,70]。弱涌现是指宏观层面的属性或过程是通过单个组件之间以复杂的方式相互作用产生的,由于计算不可约性的原理,它们不能轻易地简化为微观层面的属性。对于弱涌现来说,其模式产生的原因可能来自微观和宏观两个层面[17,72]。因此,涌现的因果关系可能与微观因果关系并存。而对于强涌现来说存在很多的争论,它指的是宏观层面的属性,原则上不能简化为微观层面的属性,包括个体之间的相互作用。此外,Jochen Fromm进一步将强涌现解释为向下因果的因果效应[18]。考虑一个包含三个不同尺度的系统:微观、介观和宏观。向下因果关系是指从宏观层面向介观层面或从介观层面向微观层面的因果力。然而,关于向下因果关系本身的概念存在许多争议[64,68]。
 +
 
 +
===早期相工作===
 +
虽然有了涌现的定性分类,然而却无法定量的刻画涌现的发生。早期已经有一些相关的工作尝试对涌现进行定量的分析。
 +
 
 +
====计算力学====
 +
Crutchfield等<ref name=":3">J. P. Crutchfield, K. Young, Inferring statistical complexity, Physical review letters 63 (2) (1989) 105.</ref>提出的计算力学理论考虑了因果状态,该方法是对状态空间的划分。而Seth等人则提出了G-emergence理论<ref name=":4">A. K. Seth, Measuring emergence via nonlinear granger causality., in: alife, Vol. 2008, 2008, pp. 545–552.</ref>利用格兰杰因果关系来量化涌现。具体来说,计算力学理论试图用定量的框架来表述涌现的因果关系,希望从一个随机过程的观测中构造一个最小的因果模型,从而来产生观测的时间序列<ref name=":3" />。其中随机过程可以用<math>\overleftrightarrow{s}</math>表示,基于时间<math>t</math>可以将随机过程分为两个部分,时间前和时间后的过程,<math>\overleftarrow{s_t}</math>和<math>\overrightarrow{s_t}</math>,当这个过程是平稳过程时,可以去掉时间。因此,可以将所有可能的历史过程<math>\overleftarrow{s_t}</math>形成的集合记作<math> \overleftarrow{S}</math>,所有未来的过程形成的集合记作<math> \overrightarrow{S}</math>。可以将<math>\overleftarrow{S}</math>分解为相互排斥又联合全面的子集,形成的集合记为<math>\mathcal{R}</math>,<math>R \in \mathcal{R}</math>中的任意子集可以看作是一个状态,定义一个分解函数<math>\eta:S→\mathcal{R}</math>。此外,定义了因果等价的概念,如果<math>P\left ( \overrightarrow{s}|\overleftarrow{s}\right )=P\left ( \overrightarrow{s}|{\overleftarrow{s}}'\right )</math>,则<math>\overleftarrow{s}</math>和<math>{\overleftarrow{s}}'</math>(表示<math>\overleftarrow{s}</math>的子集)是因果等价的。将历史<math>\overleftarrow{s_t}</math>的所有因果状态定义为<math>\epsilon \left ( \overleftarrow{s} \right )</math>,将两个因果状态<math>S_i</math>和<math>S_j</math>之间的因果转移概率记为<math>T_{ij}^{\left ( s \right )}</math>,一个随机过程的<math>\epsilon-machine</math>被定义为有序对<math>\left \{ \epsilon,T \right \}</math>,是一种模式发现机器,其中<math>\epsilon</math>是因果状态函数, <math>T</math>是通过<math>\epsilon</math>定义的状态转移矩阵的集合。通过证明<math>\epsilon-machine</math>具有最大程度的预测性和最小程度的随机性这两个重要特性验证了它在某种意义上是最优的。但是方法没有给出涌现的明确定义和定量理论,随后一些研究人员进一步推进了计算力学的发展,Shalizi等<ref>C. R. Shalizi, C. Moore, What is a macrostate? subjective observations and objective dynamics, arXiv preprint cond-mat/0303625 (2003).</ref>在自己的工作中讨论计算力学与涌现的关系,同时在另一个工作中,Shalizi等<ref>C. R. Shalizi, Causal architecture, complexity and self-organization in time series and cellular automata, The University of Wisconsin-Madison, 2001.</ref>还将计算力学应用于元胞自动机,并且在更高的描述水平上发现涌现的“粒子”。
 +
 
 +
====G-emergence====
 +
而G-emergence理论是Seth于2008年提出的最早对涌现进行定量量化的研究之一<ref name=":4" />,基本思想是用非线性格兰杰因果来量化复杂系统中的弱涌现。具体来说,使用二元自回归模型进行预测,当只存在两个变量A和B时,自回归模型存在两个等式,每个等式对应其中一个变量每个时刻值的构成,每个变量的当前时刻值都是由自身变量和另外一个变量在滞后时间范围内的变量以及残差项构成,残差可以理解为预测误差,残差可以用来衡量格兰杰因果(G-causality)的因果效应程度。B作为A的格兰杰因(G-cause)的程度通过两个残差方差之比的对数来计算,其中一个是在省略B的所有项时A的自回归模型的残差,另一个是全预测模型的残差。此外,作者还定义了G-autonomous,表示一个时间序列的过去值可以帮助预测自身的未来值。G-autonomous的程度可以用类似量化格兰杰因果的方法来测量。
 
[[文件:G-emergence.png|G-emergence理论图|alt=G-emergence理论图|居中|546x546像素|缩略图]]
 
[[文件:G-emergence.png|G-emergence理论图|alt=G-emergence理论图|居中|546x546像素|缩略图]]
 
基于上述G-causality中的两个基本概念,可以来判断涌现的发生(这里是基于格兰杰因果的涌现的衡量,记作G-emergence)。如果把A理解为宏观变量,B理解为微观变量。发生涌现的条件包含两个:1)A是关于B的G-autonomous;2)B是A的G-cause。其中G-emergence的程度是通过A的G-autonomous的程度与B的平均G-cause的程度的乘积来计算。Seth提出的G-emergence理论首次尝试使用因果关系来量化涌现现象,然而,作者使用的因果关系是格兰杰因果,这不是一个严格的因果关系,同时结果也取决于所使用的回归方法。此外,方法的度量指标是根据变量而不是动力学定义的,这意味着结果会依赖于变量的选择。
 
基于上述G-causality中的两个基本概念,可以来判断涌现的发生(这里是基于格兰杰因果的涌现的衡量,记作G-emergence)。如果把A理解为宏观变量,B理解为微观变量。发生涌现的条件包含两个:1)A是关于B的G-autonomous;2)B是A的G-cause。其中G-emergence的程度是通过A的G-autonomous的程度与B的平均G-cause的程度的乘积来计算。Seth提出的G-emergence理论首次尝试使用因果关系来量化涌现现象,然而,作者使用的因果关系是格兰杰因果,这不是一个严格的因果关系,同时结果也取决于所使用的回归方法。此外,方法的度量指标是根据变量而不是动力学定义的,这意味着结果会依赖于变量的选择。
    +
====其他定量刻画涌现的理论====
 
此外,也存在一些其他的涌现定量理论,主要有两种方法被广泛讨论。一种是从无序到有序的过程来理解涌现,Moez Mnif和Christian meller-schloer<ref name=":2">Fisch, D.; Jänicke, M.; Kalkowski, E.; Sick, B. Techniques for knowledge acquisition in dynamically changing environments. ACM Trans. Auton. Adapt. Syst. (TAAS) 2012, 7, 1–25.</ref>使用香农熵来度量有序和无序。在自组织过程中,当秩序增加时就会出现涌现,通过测量初始状态和最终状态之间的香农熵的差异来计算秩序的增加,然而该方法存在一些缺陷:依赖于抽象的观察水平以及系统初始条件的选择,为了克服这两种困难,作者提出了一种与最大熵分布相比的度量香农熵的相对水平的方法。受Moez mif和Christian meller-schloer工作的启发,参考文献建议使用两个概率分布之间的散度能更好地量化涌现。他们将涌现理解为在所观察到的样本基础上的一种意想不到的或不可预测的分布变化。但该方法存在计算量大、估计精度低等缺点。为了解决这些问题,文献<ref name=":2" />进一步提出了一种使用高斯混合模型估计密度的近似方法,并引入马氏距离来表征数据与高斯分量之间的差异,从而得到了更好的结果。此外,Holzer和de Meer<ref>Holzer, R.; De Meer, H.; Bettstetter, C. On autonomy and emergence in self-organizing systems. In International Workshop on Self-Organizing Systems, Proceedings of the Third International Workshop, IWSOS 2008, Vienna, Austria, 10–12 December 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 157–169.</ref>等人提出了另一种基于Shannon熵的涌现测量方法。他们认为一个复杂的系统是一个自组织的过程,在这个过程中,不同的个体通过通信相互作用。然后,可以根据代理之间所有通信的香农熵度量与作为单独源的每次通信的香农熵总和之间的比率来测量涌现。另一种是从“整体大于部分之和”的角度来理解涌现,该方法定义来自交互规则和代理状态的涌现,而不是整个系统的总体统计度量。具体地说,这个度量由两个相互相减的项组成。第一项描述了整个系统的集体状态,而第二项代表了所有组成部分的单个状态的总和,该度量强调涌现产生于系统的相互作用和集体行为。
 
此外,也存在一些其他的涌现定量理论,主要有两种方法被广泛讨论。一种是从无序到有序的过程来理解涌现,Moez Mnif和Christian meller-schloer<ref name=":2">Fisch, D.; Jänicke, M.; Kalkowski, E.; Sick, B. Techniques for knowledge acquisition in dynamically changing environments. ACM Trans. Auton. Adapt. Syst. (TAAS) 2012, 7, 1–25.</ref>使用香农熵来度量有序和无序。在自组织过程中,当秩序增加时就会出现涌现,通过测量初始状态和最终状态之间的香农熵的差异来计算秩序的增加,然而该方法存在一些缺陷:依赖于抽象的观察水平以及系统初始条件的选择,为了克服这两种困难,作者提出了一种与最大熵分布相比的度量香农熵的相对水平的方法。受Moez mif和Christian meller-schloer工作的启发,参考文献建议使用两个概率分布之间的散度能更好地量化涌现。他们将涌现理解为在所观察到的样本基础上的一种意想不到的或不可预测的分布变化。但该方法存在计算量大、估计精度低等缺点。为了解决这些问题,文献<ref name=":2" />进一步提出了一种使用高斯混合模型估计密度的近似方法,并引入马氏距离来表征数据与高斯分量之间的差异,从而得到了更好的结果。此外,Holzer和de Meer<ref>Holzer, R.; De Meer, H.; Bettstetter, C. On autonomy and emergence in self-organizing systems. In International Workshop on Self-Organizing Systems, Proceedings of the Third International Workshop, IWSOS 2008, Vienna, Austria, 10–12 December 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 157–169.</ref>等人提出了另一种基于Shannon熵的涌现测量方法。他们认为一个复杂的系统是一个自组织的过程,在这个过程中,不同的个体通过通信相互作用。然后,可以根据代理之间所有通信的香农熵度量与作为单独源的每次通信的香农熵总和之间的比率来测量涌现。另一种是从“整体大于部分之和”的角度来理解涌现,该方法定义来自交互规则和代理状态的涌现,而不是整个系统的总体统计度量。具体地说,这个度量由两个相互相减的项组成。第一项描述了整个系统的集体状态,而第二项代表了所有组成部分的单个状态的总和,该度量强调涌现产生于系统的相互作用和集体行为。
   −
上述的一些定量量化涌现的方法往往没有考虑因果关系,最接近的也只是使用格兰杰因果不是真正的因果。随着近年来因果科学理论得到了进一步的发展,使得可以用数学框架来量化因果,因果描述的是一个动力学过程的因果效应<ref>Pearl J. Causality[M]. Cambridge university press, 2009.</ref><ref>Granger C W. Investigating causal relations by econometric models and cross-spectral methods[J]. Econometrica: journal of the Econometric Society, 1969, 424-438.</ref><ref>Pearl J. Models, reasoning and inference[J]. Cambridge, UK: CambridgeUniversityPress, 2000, 19(2).</ref>。Judea Pearl<ref>Pearl, J. Models, Reasoning and Inference; Cambridge University Press: Cambridge, UK, 2000; Volume 19.</ref>利用概率图形模型来描述因果相互作用。Pearl用不同的模型来区分并量化了三个层次的因果关系,这里我们比较关注因果阶梯中的第二层:对输入分布做干预。此外,由于发现的因果关系背后的不确定性和模糊性,测量两个变量之间的因果效应程度是另一个重要问题。许多独立的历史研究已经解决了因果关系测量的问题。这些测量方法包括休谟的恒定连接概念<ref>Klein, B.; Hoel, E.; Swain, A.; Griebenow, R.; Levin, M. Evolution and emergence: Higher order information structure in protein interactomes across the tree of life. Integr. Biol. 2021, 13, 283–294. </ref>,Eells和Suppes将概率的提高作为因果关系的度量,以及Judea Pearl的因果度量。
+
 
 +
===因果===
 +
上述的一些定量量化涌现的方法往往没有考虑因果关系,最接近的也只是使用格兰杰因果不是真正的因果。随着近年来因果科学理论得到了进一步的发展,使得可以用数学框架来量化因果,因果描述的是一个动力学过程的因果效应<ref>Pearl J. Causality[M]. Cambridge university press, 2009.</ref><ref>Granger C W. Investigating causal relations by econometric models and cross-spectral methods[J]. Econometrica: journal of the Econometric Society, 1969, 424-438.</ref><ref>Pearl J. Models, reasoning and inference[J]. Cambridge, UK: CambridgeUniversityPress, 2000, 19(2).</ref>。Judea Pearl<ref>Pearl, J. Models, Reasoning and Inference; Cambridge University Press: Cambridge, UK, 2000; Volume 19.</ref>利用概率图形模型来描述因果相互作用。Pearl用不同的模型来区分并量化了三个层次的因果关系,这里我们比较关注因果阶梯中的第二层:对输入分布做干预。此外,由于发现的因果关系背后的不确定性和模糊性,测量两个变量之间的因果效应程度是另一个重要问题。许多独立的历史研究已经解决了因果关系测量的问题。这些测量方法包括休谟的恒定连接概念[38]和基于值函数的方法[39],Eells和Suppes将概率的提高作为因果关系的度量[41,42],以及Judea Pearl的因果度量[16]。
    
同时涌现和因果也是相互联系的:一方面,涌现是复杂系统中各组成部分之间复杂的非线性相互作用的因果效应;另一方面,涌现特性也会对复杂系统中的个体产生因果关系。因此,可以借助因果来定量刻画涌现的发生。2013美国理论神经生物学家[[Erik hoel|Erik Hoel]]尝试将因果引入涌现的衡量,提出了因果涌现这一概念,并且使用[[有效信息]](Effective Information,简称EI)来量化系统动力学的因果性强弱<ref name=":0" /><ref name=":1" />。因果涌现很好的刻画了系统宏观和微观状态之间的区别与联系,同时把人工智能中的因果和复杂系统中的涌现这两个核心概念结合起来,因果涌现也为学者回答一系列的哲学问题提供一个定量化的视角。比如,可以借助因果涌现框架讨论生命系统或者社会系统中的自上而下的因果等特性。这里的自上而下因果指的是向下因果<ref name=":2" />,表示存在宏观到微观的因果效应。例如,壁虎断尾现象,当遇到危险时壁虎不征求尾巴的建议直接将自己的尾巴断掉,这里整体是因,尾巴是果,那么就存在一个整体指向个体的因果力。
 
同时涌现和因果也是相互联系的:一方面,涌现是复杂系统中各组成部分之间复杂的非线性相互作用的因果效应;另一方面,涌现特性也会对复杂系统中的个体产生因果关系。因此,可以借助因果来定量刻画涌现的发生。2013美国理论神经生物学家[[Erik hoel|Erik Hoel]]尝试将因果引入涌现的衡量,提出了因果涌现这一概念,并且使用[[有效信息]](Effective Information,简称EI)来量化系统动力学的因果性强弱<ref name=":0" /><ref name=":1" />。因果涌现很好的刻画了系统宏观和微观状态之间的区别与联系,同时把人工智能中的因果和复杂系统中的涌现这两个核心概念结合起来,因果涌现也为学者回答一系列的哲学问题提供一个定量化的视角。比如,可以借助因果涌现框架讨论生命系统或者社会系统中的自上而下的因果等特性。这里的自上而下因果指的是向下因果<ref name=":2" />,表示存在宏观到微观的因果效应。例如,壁虎断尾现象,当遇到危险时壁虎不征求尾巴的建议直接将自己的尾巴断掉,这里整体是因,尾巴是果,那么就存在一个整体指向个体的因果力。
1,285

个编辑