更改

删除16字节 、 2024年7月8日 (星期一)
第8行: 第8行:     
===早期相工作===
 
===早期相工作===
虽然有了涌现的定性分类,然而却无法定量的刻画涌现的发生。早期已经有一些相关的工作尝试对涌现进行定量的分析。
+
虽然有了涌现的定性分类,然而却无法定量的刻画涌现的发生。早期已经有一些相关的工作尝试对涌现进行定量的分析。Crutchfield等<ref name=":3">J. P. Crutchfield, K. Young, Inferring statistical complexity, Physical review letters 63 (2) (1989) 105.</ref>提出的计算力学理论考虑了因果状态,该方法是对状态空间的划分。而Seth等人则提出了G-emergence理论<ref name=":4">A. K. Seth, Measuring emergence via nonlinear granger causality., in: alife, Vol. 2008, 2008, pp. 545–552.</ref>利用格兰杰因果关系来量化涌现。
    
====计算力学====
 
====计算力学====
Crutchfield等<ref name=":3">J. P. Crutchfield, K. Young, Inferring statistical complexity, Physical review letters 63 (2) (1989) 105.</ref>提出的计算力学理论考虑了因果状态,该方法是对状态空间的划分。而Seth等人则提出了G-emergence理论<ref name=":4">A. K. Seth, Measuring emergence via nonlinear granger causality., in: alife, Vol. 2008, 2008, pp. 545–552.</ref>利用格兰杰因果关系来量化涌现。具体来说,计算力学理论试图用定量的框架来表述涌现的因果关系,希望从一个随机过程的观测中构造一个最小的因果模型,从而来产生观测的时间序列<ref name=":3" />。其中随机过程可以用<math>\overleftrightarrow{s}</math>表示,基于时间<math>t</math>可以将随机过程分为两个部分,时间前和时间后的过程,<math>\overleftarrow{s_t}</math>和<math>\overrightarrow{s_t}</math>,当这个过程是平稳过程时,可以去掉时间。因此,可以将所有可能的历史过程<math>\overleftarrow{s_t}</math>形成的集合记作<math> \overleftarrow{S}</math>,所有未来的过程形成的集合记作<math> \overrightarrow{S}</math>。可以将<math>\overleftarrow{S}</math>分解为相互排斥又联合全面的子集,形成的集合记为<math>\mathcal{R}</math>,<math>R \in \mathcal{R}</math>中的任意子集可以看作是一个状态,定义一个分解函数<math>\eta:S→\mathcal{R}</math>。此外,定义了因果等价的概念,如果<math>P\left ( \overrightarrow{s}|\overleftarrow{s}\right )=P\left ( \overrightarrow{s}|{\overleftarrow{s}}'\right )</math>,则<math>\overleftarrow{s}</math>和<math>{\overleftarrow{s}}'</math>(表示<math>\overleftarrow{s}</math>的子集)是因果等价的。将历史<math>\overleftarrow{s_t}</math>的所有因果状态定义为<math>\epsilon \left ( \overleftarrow{s} \right )</math>,将两个因果状态<math>S_i</math>和<math>S_j</math>之间的因果转移概率记为<math>T_{ij}^{\left ( s \right )}</math>,一个随机过程的<math>\epsilon-machine</math>被定义为有序对<math>\left \{ \epsilon,T \right \}</math>,是一种模式发现机器,其中<math>\epsilon</math>是因果状态函数, <math>T</math>是通过<math>\epsilon</math>定义的状态转移矩阵的集合。通过证明<math>\epsilon-machine</math>具有最大程度的预测性和最小程度的随机性这两个重要特性验证了它在某种意义上是最优的。但是方法没有给出涌现的明确定义和定量理论,随后一些研究人员进一步推进了计算力学的发展,Shalizi等<ref>C. R. Shalizi, C. Moore, What is a macrostate? subjective observations and objective dynamics, arXiv preprint cond-mat/0303625 (2003).</ref>在自己的工作中讨论计算力学与涌现的关系,同时在另一个工作中,Shalizi等<ref>C. R. Shalizi, Causal architecture, complexity and self-organization in time series and cellular automata, The University of Wisconsin-Madison, 2001.</ref>还将计算力学应用于元胞自动机,并且在更高的描述水平上发现涌现的“粒子”。
+
计算力学理论试图用定量的框架来表述涌现的因果关系,希望从一个随机过程的观测中构造一个最小的因果模型,从而来产生观测的时间序列<ref name=":3" />。其中随机过程可以用<math>\overleftrightarrow{s}</math>表示,基于时间<math>t</math>可以将随机过程分为两个部分,时间前和时间后的过程,<math>\overleftarrow{s_t}</math>和<math>\overrightarrow{s_t}</math>,当这个过程是平稳过程时,可以去掉时间。因此,可以将所有可能的历史过程<math>\overleftarrow{s_t}</math>形成的集合记作<math> \overleftarrow{S}</math>,所有未来的过程形成的集合记作<math> \overrightarrow{S}</math>。可以将<math>\overleftarrow{S}</math>分解为相互排斥又联合全面的子集,形成的集合记为<math>\mathcal{R}</math>,<math>R \in \mathcal{R}</math>中的任意子集可以看作是一个状态,定义一个分解函数<math>\eta:S→\mathcal{R}</math>。此外,定义了因果等价的概念,如果<math>P\left ( \overrightarrow{s}|\overleftarrow{s}\right )=P\left ( \overrightarrow{s}|{\overleftarrow{s}}'\right )</math>,则<math>\overleftarrow{s}</math>和<math>{\overleftarrow{s}}'</math>(表示<math>\overleftarrow{s}</math>的子集)是因果等价的。将历史<math>\overleftarrow{s_t}</math>的所有因果状态定义为<math>\epsilon \left ( \overleftarrow{s} \right )</math>,将两个因果状态<math>S_i</math>和<math>S_j</math>之间的因果转移概率记为<math>T_{ij}^{\left ( s \right )}</math>,一个随机过程的<math>\epsilon-machine</math>被定义为有序对<math>\left \{ \epsilon,T \right \}</math>,是一种模式发现机器,其中<math>\epsilon</math>是因果状态函数, <math>T</math>是通过<math>\epsilon</math>定义的状态转移矩阵的集合。通过证明<math>\epsilon-machine</math>具有最大程度的预测性和最小程度的随机性这两个重要特性验证了它在某种意义上是最优的。但是方法没有给出涌现的明确定义和定量理论,随后一些研究人员进一步推进了计算力学的发展,Shalizi等<ref>C. R. Shalizi, C. Moore, What is a macrostate? subjective observations and objective dynamics, arXiv preprint cond-mat/0303625 (2003).</ref>在自己的工作中讨论计算力学与涌现的关系,同时在另一个工作中,Shalizi等<ref>C. R. Shalizi, Causal architecture, complexity and self-organization in time series and cellular automata, The University of Wisconsin-Madison, 2001.</ref>还将计算力学应用于元胞自动机,并且在更高的描述水平上发现涌现的“粒子”。
    
====G-emergence====
 
====G-emergence====
第20行: 第20行:  
====其他定量刻画涌现的理论====
 
====其他定量刻画涌现的理论====
 
此外,也存在一些其他的涌现定量理论,主要有两种方法被广泛讨论。一种是从无序到有序的过程来理解涌现,Moez Mnif和Christian meller-schloer<ref name=":2">Fisch, D.; Jänicke, M.; Kalkowski, E.; Sick, B. Techniques for knowledge acquisition in dynamically changing environments. ACM Trans. Auton. Adapt. Syst. (TAAS) 2012, 7, 1–25.</ref>使用香农熵来度量有序和无序。在自组织过程中,当秩序增加时就会出现涌现,通过测量初始状态和最终状态之间的香农熵的差异来计算秩序的增加,然而该方法存在一些缺陷:依赖于抽象的观察水平以及系统初始条件的选择,为了克服这两种困难,作者提出了一种与最大熵分布相比的度量香农熵的相对水平的方法。受Moez mif和Christian meller-schloer工作的启发,参考文献建议使用两个概率分布之间的散度能更好地量化涌现。他们将涌现理解为在所观察到的样本基础上的一种意想不到的或不可预测的分布变化。但该方法存在计算量大、估计精度低等缺点。为了解决这些问题,文献<ref name=":2" />进一步提出了一种使用高斯混合模型估计密度的近似方法,并引入马氏距离来表征数据与高斯分量之间的差异,从而得到了更好的结果。此外,Holzer和de Meer<ref>Holzer, R.; De Meer, H.; Bettstetter, C. On autonomy and emergence in self-organizing systems. In International Workshop on Self-Organizing Systems, Proceedings of the Third International Workshop, IWSOS 2008, Vienna, Austria, 10–12 December 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 157–169.</ref>等人提出了另一种基于Shannon熵的涌现测量方法。他们认为一个复杂的系统是一个自组织的过程,在这个过程中,不同的个体通过通信相互作用。然后,可以根据代理之间所有通信的香农熵度量与作为单独源的每次通信的香农熵总和之间的比率来测量涌现。另一种是从“整体大于部分之和”的角度来理解涌现,该方法定义来自交互规则和代理状态的涌现,而不是整个系统的总体统计度量。具体地说,这个度量由两个相互相减的项组成。第一项描述了整个系统的集体状态,而第二项代表了所有组成部分的单个状态的总和,该度量强调涌现产生于系统的相互作用和集体行为。
 
此外,也存在一些其他的涌现定量理论,主要有两种方法被广泛讨论。一种是从无序到有序的过程来理解涌现,Moez Mnif和Christian meller-schloer<ref name=":2">Fisch, D.; Jänicke, M.; Kalkowski, E.; Sick, B. Techniques for knowledge acquisition in dynamically changing environments. ACM Trans. Auton. Adapt. Syst. (TAAS) 2012, 7, 1–25.</ref>使用香农熵来度量有序和无序。在自组织过程中,当秩序增加时就会出现涌现,通过测量初始状态和最终状态之间的香农熵的差异来计算秩序的增加,然而该方法存在一些缺陷:依赖于抽象的观察水平以及系统初始条件的选择,为了克服这两种困难,作者提出了一种与最大熵分布相比的度量香农熵的相对水平的方法。受Moez mif和Christian meller-schloer工作的启发,参考文献建议使用两个概率分布之间的散度能更好地量化涌现。他们将涌现理解为在所观察到的样本基础上的一种意想不到的或不可预测的分布变化。但该方法存在计算量大、估计精度低等缺点。为了解决这些问题,文献<ref name=":2" />进一步提出了一种使用高斯混合模型估计密度的近似方法,并引入马氏距离来表征数据与高斯分量之间的差异,从而得到了更好的结果。此外,Holzer和de Meer<ref>Holzer, R.; De Meer, H.; Bettstetter, C. On autonomy and emergence in self-organizing systems. In International Workshop on Self-Organizing Systems, Proceedings of the Third International Workshop, IWSOS 2008, Vienna, Austria, 10–12 December 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 157–169.</ref>等人提出了另一种基于Shannon熵的涌现测量方法。他们认为一个复杂的系统是一个自组织的过程,在这个过程中,不同的个体通过通信相互作用。然后,可以根据代理之间所有通信的香农熵度量与作为单独源的每次通信的香农熵总和之间的比率来测量涌现。另一种是从“整体大于部分之和”的角度来理解涌现,该方法定义来自交互规则和代理状态的涌现,而不是整个系统的总体统计度量。具体地说,这个度量由两个相互相减的项组成。第一项描述了整个系统的集体状态,而第二项代表了所有组成部分的单个状态的总和,该度量强调涌现产生于系统的相互作用和集体行为。
      
===因果===
 
===因果===
1,285

个编辑