更改

添加1字节 、 2024年7月13日 (星期六)
第49行: 第49行:     
====Rosas的因果涌现理论====
 
====Rosas的因果涌现理论====
Hoel提出的基于粗粒化的方法来量化系统中的因果涌现需要预先提供系统的状态转移矩阵以及粗粒化策略,然而现实情况是,往往只能获得系统的观测数据。为了克服这两个困难,Rosas等<ref name=":5" />从信息理论视角出发,提出一种基于信息分解方法来定义系统中的因果涌现,这里发生因果涌现有两种可能性:[[因果解耦]](Causal Decoupling)和[[向下因果]](Downward Causation),其中因果解耦表示宏观态对其他宏观态的因果效应,向下因果表示宏观态对于微观元素的因果效应。具体地,定义微观状态输入为<math>X_t\ (X_t^1,X_t^2,…,X_t^n ) </math>,<math>V_t </math>表示宏观状态是<math>X_t </math>的随附特征,<math>X_{t+1} </math>和<math>V_{t+1} </math>分别表示下一时刻的微观和宏观状态。该方法建立在Willian和Beer等<ref>Williams P L, Beer R D. Nonnegative decomposition of multivariate information[J]. arXiv preprint arXiv:10042515, 2010.</ref>提出的多元信息非负分解的基础上,Beer使用偏信息分解(PID)将微观态<math>X(X^1,X^2 ) </math>与宏观态<math>V </math>之间的互信息分解为四个部分,计算公式如下所示:
+
Hoel提出的基于粗粒化的方法来量化系统中的因果涌现需要预先提供系统的状态转移矩阵以及粗粒化策略,然而现实情况是,往往只能获得系统的观测数据。为了克服这两个困难,Rosas等<ref name=":5" />从信息理论视角出发,提出一种基于信息分解方法来定义系统中的因果涌现,这里发生因果涌现有两种可能性:[[因果解耦]](Causal Decoupling)和[[向下因果]](Downward Causation),其中因果解耦表示宏观态对其他宏观态的因果效应,向下因果表示宏观态对于微观元素的因果效应。具体地,定义微观状态输入为<math>X_t\ (X_t^1,X_t^2,…,X_t^n ) </math>,<math>V_t </math>表示宏观状态是<math>X_t </math>的随附特征,<math>X_{t+1} </math>和<math>V_{t+1} </math>分别表示下一时刻的微观和宏观状态。该方法建立在Williams和Beer等<ref>Williams P L, Beer R D. Nonnegative decomposition of multivariate information[J]. arXiv preprint arXiv:10042515, 2010.</ref>提出的多元信息非负分解的基础上,Beer使用偏信息分解(PID)将微观态<math>X(X^1,X^2 ) </math>与宏观态<math>V </math>之间的互信息分解为四个部分,计算公式如下所示:
    
<math>I(X^1,X^2;V)=Red(X^1,X^2;V)+Un(X^1;V│X^2 )+Un(X^2;V│X^1 )+Syn(X^1,X^2;V) </math>
 
<math>I(X^1,X^2;V)=Red(X^1,X^2;V)+Un(X^1;V│X^2 )+Un(X^2;V│X^1 )+Syn(X^1,X^2;V) </math>
150

个编辑