打开主菜单
首页
随机
登录
设置
关于集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
免责声明
集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
搜索
更改
←上一编辑
下一编辑→
因果涌现
(查看源代码)
2024年7月14日 (日) 11:21的版本
添加216字节
、
2024年7月14日 (星期日)
→马尔可夫链的简化
第329行:
第329行:
===马尔可夫链的简化===
===马尔可夫链的简化===
−
这里
[math]P[/math]为微观状态的马尔科夫概率转移矩阵,维度为:[math]N\times N[/math],这里N为微观的状态数;而[math]P'[/math]为对[math]P[/math]做粗粒化操作之后得到的宏观态的马尔科夫概率转移矩阵,维度为[math]M\times M[/math],其中[math]M<N[/math]为宏观状态数。
+
除了对向量以及高维动力学的降维之外,马尔科夫链的简化也和因果涌现有着重要的联系。比如这里
[math]P[/math]为微观状态的马尔科夫概率转移矩阵,维度为:[math]N\times N[/math],这里N为微观的状态数;而[math]P'[/math]为对[math]P[/math]做粗粒化操作之后得到的宏观态的马尔科夫概率转移矩阵,维度为[math]M\times M[/math],其中[math]M<N[/math]为宏观状态数。
关于如何对马尔科夫概率转移矩阵实施粗粒化的方法,往往体现为两步:1、对微观状态做归并,将N个微观态,归并为M个宏观态;2、对马尔科夫转移矩阵做约简。关于具体的粗粒化马尔科夫链的方法,请参考[[马尔科夫链的粗粒化]]。
关于如何对马尔科夫概率转移矩阵实施粗粒化的方法,往往体现为两步:1、对微观状态做归并,将N个微观态,归并为M个宏观态;2、对马尔科夫转移矩阵做约简。关于具体的粗粒化马尔科夫链的方法,请参考[[马尔科夫链的粗粒化]]。
第369行:
第369行:
</math>
</math>
−
由此可见,由于归一化的EI消除了系统尺寸的影响,因此因果涌现度量更大。
+
由此可见,由于归一化的EI消除了系统尺寸的影响,因此因果涌现度量更大。我们也可以把因果涌现作为指标,评判马尔科夫链的简化是否最佳。
==参考文献==
==参考文献==
<references />
<references />
千伏电压
225
个编辑