更改

删除826字节 、 2024年7月20日 (星期六)
第214行: 第214行:  
除了能基于时序数据自动识别因果涌现,该框架还有很好的理论证明,其中有两个重要定理,定理一:神经信息挤压器的信息瓶颈,即对于任意的双射<math>\mathrm{\Psi}_\alpha </math>、投影<math>\chi_q </math>、宏观动力学<math>f </math>以及高斯噪音<math>z_{p-q}\simΝ\left (0,I_{p-q}\right ) </math>,<math>I\left(Y_t;Y_{t+1}\right)=I\left(X_t;{\hat{X}}_{t+1}\right) </math>恒成立,这意味着,编码器丢弃的所有信息实际上都是与预测无关的纯粹噪声;定理二:对于一个训练好的模型,<math>I\left(X_t;{\hat{X}}_{t+1}\right)\approx I\left(X_t;X_{t+1}\right) </math>。因此,综合定理一和定理二,可以得到对于一个训练好的模型<math>I\left(Y_t;Y_{t+1}\right)\approx I\left(X_t;X_{t+1}\right) </math>。
 
除了能基于时序数据自动识别因果涌现,该框架还有很好的理论证明,其中有两个重要定理,定理一:神经信息挤压器的信息瓶颈,即对于任意的双射<math>\mathrm{\Psi}_\alpha </math>、投影<math>\chi_q </math>、宏观动力学<math>f </math>以及高斯噪音<math>z_{p-q}\simΝ\left (0,I_{p-q}\right ) </math>,<math>I\left(Y_t;Y_{t+1}\right)=I\left(X_t;{\hat{X}}_{t+1}\right) </math>恒成立,这意味着,编码器丢弃的所有信息实际上都是与预测无关的纯粹噪声;定理二:对于一个训练好的模型,<math>I\left(X_t;{\hat{X}}_{t+1}\right)\approx I\left(X_t;X_{t+1}\right) </math>。因此,综合定理一和定理二,可以得到对于一个训练好的模型<math>I\left(Y_t;Y_{t+1}\right)\approx I\left(X_t;X_{t+1}\right) </math>。
   −
该工作的一个重要优点就是该框架能同时处理离散和连续动力学系统,通过将神经网络看作是给定输入条件下的高斯分布<math>p\left(Y| X\right) </math>,可以定义新的有效信息计算公式,公式如下所示:
+
该工作的一个重要优点就是该框架能同时处理离散和连续动力学系统,通过将神经网络看作是给定输入条件下的高斯分布<math>p\left(Y| X\right) </math>,可以定义新的有效信息计算公式,公式如下见[[有效信息]]词条的前馈神经网络部分:
 
  −
<math>\begin{gathered}EI_L(f)=I(do(X\sim U([-L,L]^n));Y)\approx-\frac{n+nln(2\pi)+\sum_{i=1}^n\sigma_i^2}2+nln(2L)+\operatorname{E}_{X\sim U([-L,L]^n)}(ln|det(\partial_{X^{\prime}}f(X)))|)\end{gathered} </math>
  −
 
  −
其中<math>U\left(\left[-L, L\right]^n\right) </math>表示范围在<math>\left[-L ,L\right] </math>上的<math>n </math>维均匀分布,<math>\sigma_i </math>是输出<math>Y_i </math>的标准差,可以通过<math>Y_i </math>的均方误差来估计,<math>det </math>表示函数<math>f </math>的雅可比行列式。为了消除有效信息计算公式会受到输入维度的影响,作者定义了新的有效信息计算公式<math>d E I_L(f) </math>,具体公式如下所示:
  −
 
  −
<math>dEI_L(f)\approx-\frac{1+ln(2\pi)+\sum_{i=1}^n\frac{\sigma_i^2}n}2+ln(2L)+\frac1n\mathrm{E}_{X\sim U([-L,L]^n)}(ln|det(\partial_{X^{\prime}}f(X)))|) </math>
      
[[NIS]]框架与前面章节中提到的计算力学存在很多相似之处,NIS可以被视为一种<math>\epsilon - machine </math>,所有历史过程构成的集合<math>\overleftarrow{S}</math>可以看作是微观状态,所有<math>R \in \mathcal{R} </math>表示宏观状态,函数<math>\eta </math>可以理解为一种粗粒化函数,<math>\epsilon </math>可以理解为一种有效的粗粒化策略,<math>T </math> 对应于有效的宏观动力学。最小随机性特征表征了宏观动力学的确定性,在因果涌现中可以用有效信息衡量。当整个框架训练足够充分的时候,可以精确地预测未来的微观状态时,编码的宏观状态收敛到有效状态,而有效状态可以被视为计算力学中的因果状态。
 
[[NIS]]框架与前面章节中提到的计算力学存在很多相似之处,NIS可以被视为一种<math>\epsilon - machine </math>,所有历史过程构成的集合<math>\overleftarrow{S}</math>可以看作是微观状态,所有<math>R \in \mathcal{R} </math>表示宏观状态,函数<math>\eta </math>可以理解为一种粗粒化函数,<math>\epsilon </math>可以理解为一种有效的粗粒化策略,<math>T </math> 对应于有效的宏观动力学。最小随机性特征表征了宏观动力学的确定性,在因果涌现中可以用有效信息衡量。当整个框架训练足够充分的时候,可以精确地预测未来的微观状态时,编码的宏观状态收敛到有效状态,而有效状态可以被视为计算力学中的因果状态。
1,884

个编辑