更改

删除730字节 、 2024年7月21日 (星期日)
第54行: 第54行:       −
其中<math>\tilde{X}_t,\tilde{X}_{t+1}</math>分别为把t时刻的[math]X_t[/math][[干预]]为[[均匀分布]]后,前后两个时刻的状态。<math>p_{ij}</math>为第i个状态转移到第j个状态的转移概率。从这个式子,不难看出,EI仅仅是概率转移矩阵[math]P[/math]的函数。
+
其中<math>\tilde{X}_t,\tilde{X}_{t+1}</math>分别为把t时刻的[math]X_t[/math][[干预]]为[[均匀分布]]后,前后两个时刻的状态。<math>p_{ij}</math>为第i个状态转移到第j个状态的转移概率。从这个式子,不难看出,EI仅仅是概率转移矩阵[math]P[/math]的函数。进行干预操作是为了使得有效信息能客观衡量动力学的因果特性而不受原始输入数据的分布影响。为了消除状态空间大小对有效信息的影响,使得比较不同的尺度下的有效信息是有意义的,作者定义了一个归一化指标有效系数来衡量动力学的因果性强弱,有效系数和有效信息有如下关系:
 
  −
 
  −
<math>EI\left(S\right)=MI\left(I_D;E_D\right)=\sum_{i\in I_D}\ p\left(do\left(s_{t-1}=i\right)\right)\sum_{s_t\in E_D}{p\left(s_t\middle|\ d\ o\left(s_{t-1}=i\right)\right)}\log_2{\frac{p\left(s_t\middle|\ d\ o\left(s_{t-1}=i\right)\right)}{p\left(s_t\right)}}\ </math>
  −
 
  −
其中<math>s_{t-1} </math>和<math>s_t </math>分别表示<math>t-1 </math>和<math>t </math>时刻的系统状态,<math>I_D=do(S_{t-1}\sim U(I)) </math>,<math>E_D=S_t\ |do(S_{t-1}\sim U(I)) </math>,这里<math>do </math>操作表示对状态进行干预并且强行设定上一时刻的状态<math>s_{t-1} </math>为均匀分布,这里<math>I </math>表示系统的状态空间,<math>U\left ( I \right ) </math>表示空间上的均匀分布。进行干预操作是为了使得有效信息能客观衡量动力学的因果特性而不受原始输入数据的分布影响。为了消除状态空间大小对有效信息的影响,使得比较不同的尺度下的有效信息是有意义的,作者定义了一个归一化指标有效系数来衡量动力学的因果性强弱,有效系数和有效信息有如下关系:
      
<math>Eff(S)=\frac{EI(S)}{\log_2 N} </math>
 
<math>Eff(S)=\frac{EI(S)}{\log_2 N} </math>
1,884

个编辑