更改

删除3字节 、 2024年7月28日 (星期日)
更改讨论中提出的错误
第21行: 第21行:  
需要说明的是,因为分布间是可以相互变换的,因此对基础分布没有特定的限制,不失一般性的,可以使用标准分布(单高斯)分布作为基础分布。另外,在本文中,我们回避使用先验分布(prior distribution)来称呼这个基础分布,是因为这里的变量<math>\mathbf{z}</math>和其他场合下的隐变量不同,在标准化流模型中,一旦<math>\mathbf{x}</math>确定了,<math>\mathbf{z}</math>也随之确定下来,不存在随机性,也没有后验概率这一说法,所以不能称其为隐变量。
 
需要说明的是,因为分布间是可以相互变换的,因此对基础分布没有特定的限制,不失一般性的,可以使用标准分布(单高斯)分布作为基础分布。另外,在本文中,我们回避使用先验分布(prior distribution)来称呼这个基础分布,是因为这里的变量<math>\mathbf{z}</math>和其他场合下的隐变量不同,在标准化流模型中,一旦<math>\mathbf{x}</math>确定了,<math>\mathbf{z}</math>也随之确定下来,不存在随机性,也没有后验概率这一说法,所以不能称其为隐变量。
   −
王磊、尤亦庄等由标准化流技术提出了神经重整化群技术,引入了神经重整化群,作为设计相互作用场论通用全息映射的通用方法。给定一个场论作用,训练一个基于流的分层深度生成神经网络,从不相干的体场波动中再现边界场集合。这样,神经网络就能开发出最优的重整化群变换。标准化流模型和NIS在某些方面具有相似性。它们都致力于使用可逆神经网络(INN)将复杂的微观状态<math>s</math>映射到更简单的宏观状态<math>S</math>,即粗粒化过程。在这种粗粒化之后,二者都试图最大化由此产生的有效信息量<math>L(s,S)</math>,从而提取出系统中重要的宏观状态特征。这种方法可以帮助理解复杂系统中的涌现现象和因果关系,在数据建模和分析中有较大应用潜力。
+
王磊、尤亦庄等由标准化流技术提出了神经重整化群技术,引入了神经重整化群,作为设计相互作用场论通用全息映射的通用方法。给定一个场论作用,训练一个基于流的分层深度生成神经网络,从不相干的体场波动中再现边界场集合。这样,神经网络就能开发出最优的重整化群变换。标准化流模型和NIS在某些方面具有相似性。它们都致力于使用可逆神经网络(INN)将复杂的微观状态<math>s</math>映射到更简单的宏观状态<math>S</math>,即粗粒化过程。在这种粗粒化之后,二者都试图最大化由此产生的信息效能<math>L(s,S)</math>,从而提取出系统中重要的宏观状态特征。这种方法可以帮助理解复杂系统中的涌现现象和因果关系,在数据建模和分析中有较大应用潜力。
    
==数学框架:最大化EI==
 
==数学框架:最大化EI==
第48行: 第48行:     
==神经网络框架==
 
==神经网络框架==
[[文件:NIS Graph New.png||居中|600px|NIS框架简介]]
+
[[文件:NIS Graph new2.png|居中|600px|NIS框架简介]]
      第312行: 第312行:  
* 由于可逆神经网络很难在大数据集上训练,它只能在小数据集上工作,目前的数值实验也集中在弹簧振子和简单布尔网络等环境下;
 
* 由于可逆神经网络很难在大数据集上训练,它只能在小数据集上工作,目前的数值实验也集中在弹簧振子和简单布尔网络等环境下;
 
* 该框架仍然缺乏可解释性<ref>Williams, P.L.; Beer., R.D. Nonnegative decomposition of multivariate information. arXiv 2017, arXiv:1004.2515.</ref>;
 
* 该框架仍然缺乏可解释性<ref>Williams, P.L.; Beer., R.D. Nonnegative decomposition of multivariate information. arXiv 2017, arXiv:1004.2515.</ref>;
* NIS并未真正地最小化有效信息;
+
* NIS并未真正地最大化有效信息;
 
* 该模型可预测的条件分布仅限于高斯或拉普拉斯分布。
 
* 该模型可预测的条件分布仅限于高斯或拉普拉斯分布。
  
68

个编辑