更改

添加798字节 、 2024年7月29日 (星期一)
无编辑摘要
第2行: 第2行:     
= 问题与背景 =
 
= 问题与背景 =
在自然界和人类社会中,存在着许多由无数相互作用的元素构成的复杂系统,如气候系统、生态系统、鸟群、蚁群、细胞和大脑等。这些系统展现出丰富的非线性动力学行为,如果我们仅关注微观的尺度,会发现它们的行为非常复杂且难以预测。当我们从更宏观的尺度观察这些系统时,可以用更加简洁的规律来解释和预测这些系统,这便是复杂系统独有的涌现现象。
+
在自然界和人类社会中,存在着许多由无数相互作用的元素构成的[[复杂系统]],如气候系统、生态系统、鸟群、蚁群、细胞和大脑等。这些系统展现出丰富的非线性动力学行为,如果我们仅关注微观的尺度,会发现它们的行为非常复杂且难以预测。当我们从更宏观的尺度观察这些系统时,可以用更加简洁的规律来解释和预测这些系统,这便是复杂系统独有的[[涌现]]现象。
   −
涌现现象与因果关系紧密相连。一方面,涌现性是系统内部各元素间复杂非线性相互作用的结果;另一方面,这些涌现的特性又会对系统中的个体产生影响。因果涌现这个概念最早由Erik Hoel正式提出并定义,即因果涌现描述了宏观层面相对于微观层面在因果效应上的增强,这揭示了宏观与微观状态之间的差异和联系。
+
[[涌现]]现象与因果关系紧密相连。一方面,[[涌现]]现象是系统内部各元素间复杂非线性相互作用的结果;另一方面,这些[[涌现]]的特性又会对系统中的个体产生影响。[[因果涌现]]这个概念最早由Erik Hoel正式提出并定义,即[[因果涌现]]描述了宏观层面相对于微观层面在[[因果效应]]上的增强,这揭示了宏观与微观状态之间的差异和联系。
   −
因果涌现的概念不仅将因果推理与复杂系统的涌现特性相结合,而且为解决一系列哲学问题提供了一个定量化的视角。<s>(涌现和因果)</s>
+
[[因果涌现]]的概念不仅将因果推理与[[复杂系统]]的涌现特性相结合,而且为解决一系列哲学问题提供了一个定量化的视角。
   −
目前,关于如何定义因果涌现,有四个主要代表,分别是:①Hoel等基于粗粒化方法的因果涌现理论、②Rosas等基于信息分解的因果涌现理论、③张江等人基于奇异值分解的因果涌现理论、④Barnett等的动力学解耦。具体内容可以参考词条[[因果涌现]]<s>(因果涌现理论)</s>
+
目前,关于如何定义[[因果涌现]],有四个主要代表,分别是:①Hoel等基于粗粒化方法的因果涌现理论<ref>Hoel E P, Albantakis L, Tononi G. Quantifying causal emergence shows that macro can beat micro[J]. Proceedings of the National Academy of Sciences, 2013, 110(49): 19790-19795.</ref><ref>Hoel E P. When the map is better than the territory[J]. Entropy, 2017, 19(5): 188.</ref>、②Rosas等基于信息分解的因果涌现理论<ref>Rosas F E, Mediano P A, Jensen H J, et al. Reconciling emergences: An information-theoretic approach to identify causal emergence in multivariate data[J]. PLoS computational biology, 2020, 16(12): e1008289.</ref>、③张江等人基于奇异值分解的因果涌现理论<ref>Zhang J, Tao R, Yuan B. Dynamical Reversibility and A New Theory of Causal Emergence. arXiv preprint arXiv:2402.15054. 2024 Feb 23.</ref>、④Barnett等的动力学解耦<ref>Barnett L, Seth AK. Dynamical independence: discovering emergent macroscopic processes in complex dynamical systems. Physical Review E. 2023 Jul;108(1):014304.</ref>
 +
 
 +
具体内容可以参考词条[[因果涌现]]。
    
== 因果涌现识别 ==
 
== 因果涌现识别 ==
259

个编辑