更改

大小无更改 、 2024年8月5日 (星期一)
无编辑摘要
第1行: 第1行: −
'''因果涌现(causal emergence)'''是指动力系统中的一类特殊的[[涌现]]现象,即系统在宏观尺度会展现出更强的因果特性。特别的,对于一类马尔可夫动力学系统来说,在对其状态空间进行适当的[[粗粒化]]以后,所形成的宏观动力学会展现出比微观更强的因果特性,那么称该系统发生了因果涌现<ref name=":0">Hoel E P, Albantakis L, Tononi G. Quantifying causal emergence shows that macro can beat micro[J]. Proceedings of the National Academy of Sciences, 2013, 110(49): 19790-19795.</ref><ref name=":1">Hoel E P. When the map is better than the territory[J]. Entropy, 2017, 19(5): 188.</ref>。[[马尔科夫动力学]]系统是指系统在某一时刻的状态仅仅依赖于系统上一时刻所处的状态,而与更早的状态无关。这里的粗粒化是指对系统的状态空间进行约简的一种方法,它往往可以表示为一个具有降维特征的函数映射。所谓的宏观动力学是指在被粗粒化后的新状态空间上的随附的(supervenient)动力学,它完全取决于微观的动力学和粗粒化方式。
+
'''因果涌现(causal emergence)'''是指动力系统中的一类特殊的[[涌现]]现象,即系统在宏观尺度会展现出更强的因果特性。特别的,对于一类马尔科夫动力学系统来说,在对其状态空间进行适当的[[粗粒化]]以后,所形成的宏观动力学会展现出比微观更强的因果特性,那么称该系统发生了因果涌现<ref name=":0">Hoel E P, Albantakis L, Tononi G. Quantifying causal emergence shows that macro can beat micro[J]. Proceedings of the National Academy of Sciences, 2013, 110(49): 19790-19795.</ref><ref name=":1">Hoel E P. When the map is better than the territory[J]. Entropy, 2017, 19(5): 188.</ref>。[[马尔科夫动力学]]系统是指系统在某一时刻的状态仅仅依赖于系统上一时刻所处的状态,而与更早的状态无关。这里的粗粒化是指对系统的状态空间进行约简的一种方法,它往往可以表示为一个具有降维特征的函数映射。所谓的宏观动力学是指在被粗粒化后的新状态空间上的随附的(supervenient)动力学,它完全取决于微观的动力学和粗粒化方式。
    
==历史==
 
==历史==
第56行: 第56行:  
可以通过比较系统中宏微观动力学的有效信息大小来判断因果涌现的发生(<math>CE=EI\left ( S_M \right )-EI\left (S_m \right )</math>,其中<math>S_M</math>和<math>S_m</math>分别表示宏微观动力学)。如果通过有效的粗粒化使得宏观动力学的有效信息大于微观动力学的有效信息(<math>EI\left ( S_M \right )> EI\left (S_m \right ) </math>),那么认为在该粗粒化基础上宏观动力学具有因果涌现特性。
 
可以通过比较系统中宏微观动力学的有效信息大小来判断因果涌现的发生(<math>CE=EI\left ( S_M \right )-EI\left (S_m \right )</math>,其中<math>S_M</math>和<math>S_m</math>分别表示宏微观动力学)。如果通过有效的粗粒化使得宏观动力学的有效信息大于微观动力学的有效信息(<math>EI\left ( S_M \right )> EI\left (S_m \right ) </math>),那么认为在该粗粒化基础上宏观动力学具有因果涌现特性。
   −
在文献中,Hoel给出一个含有8个状态的马尔可夫链的状态转移矩阵例子,如图a所示。其中前7个状态之间等概率转移,最后一个状态是独立的,通过将前7个状态粗粒化成一个状态,可以得到右图确定的宏观系统,即系统的未来状态完全可以由当前状态决定。此时<math>EI(S_M\ )>EI(S_m\ ) </math>,系统发生了因果涌现。
+
在文献中,Hoel给出一个含有8个状态的马尔科夫链的状态转移矩阵例子,如图a所示。其中前7个状态之间等概率转移,最后一个状态是独立的,通过将前7个状态粗粒化成一个状态,可以得到右图确定的宏观系统,即系统的未来状态完全可以由当前状态决定。此时<math>EI(S_M\ )>EI(S_m\ ) </math>,系统发生了因果涌现。
    
[[文件:状态空间中的因果涌现.png|居中|500x500像素|状态空间上的因果涌现|替代=|缩略图]]
 
[[文件:状态空间中的因果涌现.png|居中|500x500像素|状态空间上的因果涌现|替代=|缩略图]]
第161行: 第161行:  
!方法!!是否考虑因果!!是否涉及粗粒化!!适用的动力学系统!!度量指标
 
!方法!!是否考虑因果!!是否涉及粗粒化!!适用的动力学系统!!度量指标
 
|-
 
|-
|Hoel的因果涌现理论||考虑了,引入do干预||考虑了粗粒化,但是需要人为选择||离散马尔可夫动力学||有效信息
+
|Hoel的因果涌现理论||考虑了,引入do干预||考虑了粗粒化,但是需要人为选择||离散马尔科夫动力学||有效信息
 
|-
 
|-
 
|Rosas的因果涌现理论||未考虑,只是互信息的组合||基于协同信息判断时不涉及粗粒化,基于冗余信息计算也涉及宏观态的选择||任意动力学||协同信息与冗余信息
 
|Rosas的因果涌现理论||未考虑,只是互信息的组合||基于协同信息判断时不涉及粗粒化,基于冗余信息计算也涉及宏观态的选择||任意动力学||协同信息与冗余信息
 
|-
 
|-
|基于可逆性的因果涌现理论||未考虑||不依赖于具体的粗粒化策略||离散马尔可夫动力学||<math>\Gamma</math>
+
|基于可逆性的因果涌现理论||未考虑||不依赖于具体的粗粒化策略||离散马尔科夫动力学||<math>\Gamma</math>
 
|-
 
|-
 
|Dynamic independence||只是格兰杰因果,不知真正的因果||涉及,基于梯度下降求解线性变换(粗粒化函数)||任意动力学||转移熵
 
|Dynamic independence||只是格兰杰因果,不知真正的因果||涉及,基于梯度下降求解线性变换(粗粒化函数)||任意动力学||转移熵
第195行: 第195行:  
由于<math>Red(V_t, V_{t+1};X_t) </math>为非负数,所以提出一个充分非必要条件<math>\Psi_{t, t+1}(V) </math>。当<math>\Psi_{t, t+1}(V) > 0 </math>,系统发生因果涌现。
 
由于<math>Red(V_t, V_{t+1};X_t) </math>为非负数,所以提出一个充分非必要条件<math>\Psi_{t, t+1}(V) </math>。当<math>\Psi_{t, t+1}(V) > 0 </math>,系统发生因果涌现。
   −
该方法因为是基于格兰杰因果,所以计算比较方便,且对系统的动力学没有马尔可夫性的假设和要求,同时该方法避开讨论粗粒化策略。但是也存在很多缺点:1)该方法提出的三个指标 ,<math>\mathrm{\Psi} </math> ,<math>\mathrm{\Delta} </math> 和<math>\mathrm{\Gamma} </math>只是基于互信息计算没有考虑因果,同时该方法得到的仅仅是发生因果涌现的充分条件;2)该方法无法得到显式的宏观动力学以及粗粒化策略,然而这两项对于下游的任务往往十分重要,同时该方法需要手动给定粗粒化策略和宏观变量,而不同的选择会对结果造成显著影响;3)当系统具有大量冗余信息或具有许多变量时,该方法的计算复杂度仍然很高,由于<math>\Psi </math>作为近似条件,高维系统中误差非常大,很容易得到负值,从而无法判断是否有因果涌现发生。因此,该方法不是一种最优的方法,基于数据驱动的神经信息压缩方法应运而生。
+
该方法因为是基于格兰杰因果,所以计算比较方便,且对系统的动力学没有马尔科夫性的假设和要求,同时该方法避开讨论粗粒化策略。但是也存在很多缺点:1)该方法提出的三个指标 ,<math>\mathrm{\Psi} </math> ,<math>\mathrm{\Delta} </math> 和<math>\mathrm{\Gamma} </math>只是基于互信息计算没有考虑因果,同时该方法得到的仅仅是发生因果涌现的充分条件;2)该方法无法得到显式的宏观动力学以及粗粒化策略,然而这两项对于下游的任务往往十分重要,同时该方法需要手动给定粗粒化策略和宏观变量,而不同的选择会对结果造成显著影响;3)当系统具有大量冗余信息或具有许多变量时,该方法的计算复杂度仍然很高,由于<math>\Psi </math>作为近似条件,高维系统中误差非常大,很容易得到负值,从而无法判断是否有因果涌现发生。因此,该方法不是一种最优的方法,基于数据驱动的神经信息压缩方法应运而生。
    
为了验证猕猴运动有关的信息是其皮层活动的一个涌现特征,Rosas等做了如下实验:基于猕猴的皮质脑电图(ECoG)和动作捕捉(MoCap)数据,其中 ECoG 和 MoCap 分别由 64 个通道和 3 个通道的数据构成微观和宏观数据;由于最原始的 MoCap 数据不满足随附特征的条件独立假设,因此,他们利用[[偏最小二乘]]和[[支持向量机]]算法,推断出与预测猕猴行为有关的编码在 ECoG 信号中的那部分神经活动,并推测该信息是潜在神经活动的涌现特征;基于计算所得宏观特征与微观状态,验证了因果涌现的存在。
 
为了验证猕猴运动有关的信息是其皮层活动的一个涌现特征,Rosas等做了如下实验:基于猕猴的皮质脑电图(ECoG)和动作捕捉(MoCap)数据,其中 ECoG 和 MoCap 分别由 64 个通道和 3 个通道的数据构成微观和宏观数据;由于最原始的 MoCap 数据不满足随附特征的条件独立假设,因此,他们利用[[偏最小二乘]]和[[支持向量机]]算法,推断出与预测猕猴行为有关的编码在 ECoG 信号中的那部分神经活动,并推测该信息是潜在神经活动的涌现特征;基于计算所得宏观特征与微观状态,验证了因果涌现的存在。
第268行: 第268行:     
===复杂网络中的因果涌现===
 
===复杂网络中的因果涌现===
2020年,Klein和Hoel改进此前提出的基于粗粒化的方法并将其应用到[[复杂网络]]中<ref>Klein B, Hoel E. The emergence of informative higher scales in complex networks[J]. Complexity, 2020, 20201-12.</ref>,作者借助随机游走子来定义网络中的马尔可夫链,将随机游走子放在节点上等价于对节点做干预,然后基于随机游走概率定义节点的转移概率矩阵。同时作者将[[有效信息]]与网络的连通性建立联系,网络中的连通性可以通过节点的出边和入边的权重的不确定性来表征,基于此定义复杂网络中的有效信息。
+
2020年,Klein和Hoel改进此前提出的基于粗粒化的方法并将其应用到[[复杂网络]]中<ref>Klein B, Hoel E. The emergence of informative higher scales in complex networks[J]. Complexity, 2020, 20201-12.</ref>,作者借助随机游走子来定义网络中的马尔科夫链,将随机游走子放在节点上等价于对节点做干预,然后基于随机游走概率定义节点的转移概率矩阵。同时作者将[[有效信息]]与网络的连通性建立联系,网络中的连通性可以通过节点的出边和入边的权重的不确定性来表征,基于此定义复杂网络中的有效信息。
    
在[[随机网络模型|随机网络]](ER)、偏好依赖网络(PA)等人工网络以及四类真实网络中进行实验比较。对于ER网络来说,有效信息的大小只依赖于连接概率<math>p </math>,并且随着网络规模的增大会收敛到<math>-log_2p </math>。同时一个关键发现表明,存在一个相变点,该相变点近似在网络的平均度(<math><k> </math>)等于<math>log_2N </math>的位置,同样对应于ER网络随着连接概率增加而出现巨连通集团的相变点位置,超过该相变点随机网络结构不会随着其规模的增加而包含更多的信息。对于PA网络来说,<math>\alpha<1.0 </math>时,有效信息的大小会随着网络规模的增加而增大;<math>\alpha>1.0 </math>时,结论相反;<math>\alpha=1.0 </math>对应的无标度网络则是增长的临界边界。对于真实网络,作者发现,生物网络因为具有很大的噪音,所以有效信息最低,通过有效的粗粒化能去除这些噪音,相比于其他类型网络因果涌现最显著,而技术类型网络是更稀疏、非退化的,因此,平均效率更高,节点关系也更加具体,所有有效信息也最高。  
 
在[[随机网络模型|随机网络]](ER)、偏好依赖网络(PA)等人工网络以及四类真实网络中进行实验比较。对于ER网络来说,有效信息的大小只依赖于连接概率<math>p </math>,并且随着网络规模的增大会收敛到<math>-log_2p </math>。同时一个关键发现表明,存在一个相变点,该相变点近似在网络的平均度(<math><k> </math>)等于<math>log_2N </math>的位置,同样对应于ER网络随着连接概率增加而出现巨连通集团的相变点位置,超过该相变点随机网络结构不会随着其规模的增加而包含更多的信息。对于PA网络来说,<math>\alpha<1.0 </math>时,有效信息的大小会随着网络规模的增加而增大;<math>\alpha>1.0 </math>时,结论相反;<math>\alpha=1.0 </math>对应的无标度网络则是增长的临界边界。对于真实网络,作者发现,生物网络因为具有很大的噪音,所以有效信息最低,通过有效的粗粒化能去除这些噪音,相比于其他类型网络因果涌现最显著,而技术类型网络是更稀疏、非退化的,因此,平均效率更高,节点关系也更加具体,所有有效信息也最高。  
第304行: 第304行:     
==相关领域研究==
 
==相关领域研究==
存在一些相关领域研究与因果涌现理论联系比较紧密,重点介绍与因果科学、因果模型抽象、模型约简、动力学模式分解以及马尔可夫链的简化的区别和联系。
+
存在一些相关领域研究与因果涌现理论联系比较紧密,重点介绍与因果科学、因果模型抽象、模型约简、动力学模式分解以及马尔科夫链的简化的区别和联系。
 
===因果科学===
 
===因果科学===
   第372行: 第372行:  
模型约简和动力学模式分解虽然都和模型粗粒化十分接近,但是他们都没有基于有效信息的优化,本质上都是默认了一定会损失信息,而不会增强因果效应。后续的证明<ref><blockquote>Liu K, Yuan B, Zhang J. An Exact Theory of Causal Emergence for Linear Stochastic Iteration Systems[J]. arXiv preprint arXiv:2405.09207, 2024.</blockquote></ref>中我们知道其实有效信息最大化的最优解集包含因果涌最大化的解集,因此如果要优化因果涌现,可以先最小化误差,在最小误差的解集中寻找最佳的粗粒化策略。
 
模型约简和动力学模式分解虽然都和模型粗粒化十分接近,但是他们都没有基于有效信息的优化,本质上都是默认了一定会损失信息,而不会增强因果效应。后续的证明<ref><blockquote>Liu K, Yuan B, Zhang J. An Exact Theory of Causal Emergence for Linear Stochastic Iteration Systems[J]. arXiv preprint arXiv:2405.09207, 2024.</blockquote></ref>中我们知道其实有效信息最大化的最优解集包含因果涌最大化的解集,因此如果要优化因果涌现,可以先最小化误差,在最小误差的解集中寻找最佳的粗粒化策略。
   −
===马尔可夫链的简化===
+
===马尔科夫链的简化===
 
除了对向量以及高维动力学的降维之外,马尔科夫链的简化也和因果涌现有着重要的联系。比如这里[math]P[/math]为微观状态的马尔科夫概率转移矩阵,维度为:[math]N\times N[/math],这里N为微观的状态数;而[math]P'[/math]为对[math]P[/math]做粗粒化操作之后得到的宏观态的马尔科夫概率转移矩阵,维度为[math]M\times M[/math],其中[math]M<N[/math]为宏观状态数。
 
除了对向量以及高维动力学的降维之外,马尔科夫链的简化也和因果涌现有着重要的联系。比如这里[math]P[/math]为微观状态的马尔科夫概率转移矩阵,维度为:[math]N\times N[/math],这里N为微观的状态数;而[math]P'[/math]为对[math]P[/math]做粗粒化操作之后得到的宏观态的马尔科夫概率转移矩阵,维度为[math]M\times M[/math],其中[math]M<N[/math]为宏观状态数。
  
1,884

个编辑