更改

大小无更改 、 2024年8月6日 (星期二)
第61行: 第61行:     
此外,论文中也包括一个[[布尔网络]]的例子,下图展示1个含有4个节点的布尔网络例子,每个节点有0和1两种状态,每个节点与其中两个节点相连,遵循相同的微观[[动力学机制]](a图),因此,一共含有十六个微观状态,可以得到一个<math>16\times16 </math>的状态转移矩阵(c图),然后给定分组方式,如将A和B进行合并,C和D进行合并(b图),同时给定微观状态到宏观状态的映射函数(d图),就可以得到新的宏观动力学机制,根据这个机制就可以得到宏观网络的状态转移矩阵(e图),通过对比发现宏观动力学的[[有效信息]]大于微观动力学的有效信息(<math>EI(S_M\ )>EI(S_m\ ) </math>),系统发生了因果涌现。
 
此外,论文中也包括一个[[布尔网络]]的例子,下图展示1个含有4个节点的布尔网络例子,每个节点有0和1两种状态,每个节点与其中两个节点相连,遵循相同的微观[[动力学机制]](a图),因此,一共含有十六个微观状态,可以得到一个<math>16\times16 </math>的状态转移矩阵(c图),然后给定分组方式,如将A和B进行合并,C和D进行合并(b图),同时给定微观状态到宏观状态的映射函数(d图),就可以得到新的宏观动力学机制,根据这个机制就可以得到宏观网络的状态转移矩阵(e图),通过对比发现宏观动力学的[[有效信息]]大于微观动力学的有效信息(<math>EI(S_M\ )>EI(S_m\ ) </math>),系统发生了因果涌现。
[[文件:含有4个节点的布尔网络.png|居中|500x500像素|离散布尔网络上的因果涌现|替代=含有4个节点布尔网络的因果涌现|缩略图]]
+
[[文件:含有4个节点的布尔网络.png|居中|600x600像素|离散布尔网络上的因果涌现|替代=含有4个节点布尔网络的因果涌现|缩略图]]
    
然而,该方法只能应用到离散的状态转移矩阵中,为了拓展该方法,Hoel等人提出了[[因果几何]]框架<ref name="Chvykov_causal_geometry">{{cite journal|author1=Chvykov P|author2=Hoel E.|title=Causal Geometry|journal=Entropy|year=2021|volume=23|issue=1|page=24|url=https://doi.org/10.3390/e2}}</ref>尝试将有效信息指标拓展到连续系统中,解决了[[随机函数映射]]的EI计算问题,同时还引入了干预噪音和[[因果几何]]的概念,并定义了EI的局部形式,并将这种形式与[[信息几何]]进行了对照和类比。然而该方法也存在一些局限性,只能应用到[[随机映射函数]]中无法应用到动力学上。
 
然而,该方法只能应用到离散的状态转移矩阵中,为了拓展该方法,Hoel等人提出了[[因果几何]]框架<ref name="Chvykov_causal_geometry">{{cite journal|author1=Chvykov P|author2=Hoel E.|title=Causal Geometry|journal=Entropy|year=2021|volume=23|issue=1|page=24|url=https://doi.org/10.3390/e2}}</ref>尝试将有效信息指标拓展到连续系统中,解决了[[随机函数映射]]的EI计算问题,同时还引入了干预噪音和[[因果几何]]的概念,并定义了EI的局部形式,并将这种形式与[[信息几何]]进行了对照和类比。然而该方法也存在一些局限性,只能应用到[[随机映射函数]]中无法应用到动力学上。
1,884

个编辑