更改

添加12字节 、 2024年8月16日 (星期五)
第26行: 第26行:     
====G-emergence====
 
====G-emergence====
而G-emergence理论是Seth于2008年提出的最早对[[涌现]]进行定量量化的研究之一<ref name=":4" />,基本思想是用非线性[[格兰杰因果关系|格兰杰因果]]来量化复杂系统中的弱涌现。具体来说,使用二元自回归模型进行预测,当只存在两个变量A和B时,[[自回归模型]]存在两个等式,每个等式对应其中一个变量每个时刻值的构成,每个变量的当前时刻值都是由自身变量和另外一个变量在滞后时间范围内的变量以及残差项构成,残差可以理解为预测误差,残差可以用来衡量格兰杰因果(G-causality)的因果效应程度。B作为A的格兰杰因(G-cause)的程度通过两个残差方差之比的对数来计算,其中一个是在省略B的所有项时A的自回归模型的残差,另一个是全预测模型的残差。此外,作者还定义了G-autonomous,表示一个时间序列的过去值可以帮助预测自身的未来值。G-autonomous的程度可以用类似量化格兰杰因果的方法来测量。
+
而G-emergence理论是Seth于2008年提出的最早对[[涌现]]进行定量量化的研究之一<ref name=":4" />,基本思想是用非线性[[格兰杰因果关系|格兰杰因果]]来量化复杂系统中的弱涌现。具体来说,如果我们使用二元自回归模型进行预测,当只存在两个变量A和B时,[[自回归模型]]存在两个等式,每个等式对应其中一个变量每个时刻值的构成,每个变量的当前时刻值都是由自身变量和另外一个变量在滞后时间范围内的变量以及残差项构成,残差可以理解为预测误差,残差可以用来衡量格兰杰因果(G-causality)的因果效应程度。B作为A的格兰杰因(G-cause)的程度通过两个残差方差之比的对数来计算,其中一个是在省略B的所有项时A的自回归模型的残差,另一个是全预测模型的残差。此外,作者还定义了G-autonomous,表示一个时间序列的过去值可以帮助预测自身的未来值。G-autonomous的程度可以用类似量化格兰杰因果的方法来测量。
 
[[文件:G Emergence Theory.png|G-emergence理论图|alt=G-emergence理论图|居中|400x300像素|缩略图]]
 
[[文件:G Emergence Theory.png|G-emergence理论图|alt=G-emergence理论图|居中|400x300像素|缩略图]]
 
基于上述G-causality中的两个基本概念,可以来判断涌现的发生(这里是基于格兰杰因果的涌现的衡量,记作G-emergence)。如果把A理解为宏观变量,B理解为微观变量。发生涌现的条件包含两个:1)A是关于B的G-autonomous;2)B是A的G-cause。其中G-emergence的程度是通过A的G-autonomous的程度与B的平均G-cause的程度的乘积来计算。Seth提出的G-emergence理论首次尝试使用因果关系来量化涌现现象,然而,作者使用的因果关系是[[格兰杰因果关系|格兰杰因果]],这不是一个严格的因果关系,同时结果也取决于所使用的回归方法。此外,方法的度量指标是根据变量而不是动力学定义的,这意味着结果会依赖于变量的选择。
 
基于上述G-causality中的两个基本概念,可以来判断涌现的发生(这里是基于格兰杰因果的涌现的衡量,记作G-emergence)。如果把A理解为宏观变量,B理解为微观变量。发生涌现的条件包含两个:1)A是关于B的G-autonomous;2)B是A的G-cause。其中G-emergence的程度是通过A的G-autonomous的程度与B的平均G-cause的程度的乘积来计算。Seth提出的G-emergence理论首次尝试使用因果关系来量化涌现现象,然而,作者使用的因果关系是[[格兰杰因果关系|格兰杰因果]],这不是一个严格的因果关系,同时结果也取决于所使用的回归方法。此外,方法的度量指标是根据变量而不是动力学定义的,这意味着结果会依赖于变量的选择。
727

个编辑