更改

删除1,697字节 、 2024年8月18日 (星期日)
第482行: 第482行:  
I(X;Y)=I(X;\Phi^\dagger_T(Y))
 
I(X;Y)=I(X;\Phi^\dagger_T(Y))
 
</math>
 
</math>
  −
= NIS 和NIS+ 的原理图 =
  −
  −
[[文件:NIS+ 1.png|NIS+概述|替代=|居中|缩略图|404x404像素]]
  −
  −
(a)输入端:模拟系统的各种形式的数据,如Boid群集模型(多智能体系统),康威生命游戏(二维细胞自动机)和真实的大脑fMRI时间序列数据。(b) 分析框架:NIS+的框架,它结合了以前的模型NIS。方框表示函数或神经网络,指向叉的箭头表示信息屏蔽操作。其中xt和xt+1表示微观状态的观测数据,x t+1表示预测的微观状态。通过编码器对微观状态进行编码,得到宏观状态,表示为yt = ϕ (xt)和yt+1 = ϕ (xt+1)。同样,通过对微观状态的预测进行编码,可以获得预测的宏观状态,yt = ϕ (xt)和yt+1 = ϕ (xt+1)。这种新颖的NIS+计算框架可以实现粗粒度突现空间下EI的最大化。因此,它可以在涌现空间上优化一个由fθ表示的独立因果机制(f)。一旦获得不同q的宏观动力学fθ,它也可以用来量化原始数据中的CE。(c) 输出端:NIS+的各种输出形式,包括CE的程度、学习到的宏观动态、捕捉到的涌现模式和粗粒度策略。
  −
  −
在实践中,通过在训练数据上设置归一化MAE(平均绝对误差除以x的标准差)来获得λ的值。标准化MAE的选择确保了不同实验的一致标准,考虑到不同的数值范围。通过改变q,我们可以得到不同维度的宏观动力学。如果q = p,那么fp就是学习到的微动力学。然后我们可以对任意q进行Jq和Jp的比较。因果涌现的量化计算以下差值:∆J ≡ J (fq) − J (fp), 其中∆J定义为因果涌现的程度。如果∆J > 0,则数据内存在因果涌现。
      
= NIS+ 框架有效性的验证(数值实验) =
 
= NIS+ 框架有效性的验证(数值实验) =
272

个编辑