更改

添加6字节 、 2024年8月25日 (星期日)
修正文字排版
第184行: 第184行:  
==使用可逆神经网络的原因==
 
==使用可逆神经网络的原因==
 
[[文件:Pasted image 20240519112728.png|靠左|600px|'''图2.''' 双射器基本模块的 RealNVP 神经网络 <math> (\psi) </math> 实现。]]
 
[[文件:Pasted image 20240519112728.png|靠左|600px|'''图2.''' 双射器基本模块的 RealNVP 神经网络 <math> (\psi) </math> 实现。]]
 +
 
有多种方法可以实现可逆神经网络<ref>Teshima, T.; Ishikawa, I.; Tojo, K.; Oono, K.; Ikeda, M.; Sugiyama, M. Coupling-based invertible neural networks are universal diffeomorphism approximators. Adv. Neural Inf. Process. Syst. 2020, 33, 3362–3373.</ref><ref>Teshima, T.; Tojo, K.; Ikeda, M.; Ishikawa, I.; Oono, K. Universal approximation property of neural ordinary differential equations. arXiv 2017, arXiv:2012.02414.</ref>。这里选择如图2所示的RealNVP模块<ref name=":0">Dinh, L.; Sohl-Dickstein, J.; Bengio, S. Density estimation using real nvp. arXiv 2016, arXiv:1605.08803.</ref>来具体实现可逆计算。
 
有多种方法可以实现可逆神经网络<ref>Teshima, T.; Ishikawa, I.; Tojo, K.; Oono, K.; Ikeda, M.; Sugiyama, M. Coupling-based invertible neural networks are universal diffeomorphism approximators. Adv. Neural Inf. Process. Syst. 2020, 33, 3362–3373.</ref><ref>Teshima, T.; Tojo, K.; Ikeda, M.; Ishikawa, I.; Oono, K. Universal approximation property of neural ordinary differential equations. arXiv 2017, arXiv:2012.02414.</ref>。这里选择如图2所示的RealNVP模块<ref name=":0">Dinh, L.; Sohl-Dickstein, J.; Bengio, S. Density estimation using real nvp. arXiv 2016, arXiv:1605.08803.</ref>来具体实现可逆计算。
   第213行: 第214行:  
==压缩信道理论==
 
==压缩信道理论==
 
[[文件:NIS Fig 3.png|靠左|600px|'''图3.''' 神经信息压缩器压缩信道的图形模型。]]
 
[[文件:NIS Fig 3.png|靠左|600px|'''图3.''' 神经信息压缩器压缩信道的图形模型。]]
 +
 
NIS框架(图 1)可以看作图 3 所示的信道,由于投影操作的存在,通道在中间被压缩。此为压缩信息通道。
 
NIS框架(图 1)可以看作图 3 所示的信道,由于投影操作的存在,通道在中间被压缩。此为压缩信息通道。
 +
      第297行: 第300行:  
其中<math>\xi \sim \mathcal{N}(0,\sigma)</math> 是符合二维高斯分布的随机数值,<math>\sigma</math> 是位置与速度标准差的向量。将状态<math>\mathbf{x}</math>理解为潜在宏观状态,测量微观状态<math>\tilde{\mathbf{x}}_1</math>,<math>\tilde{\mathbf{x}_2}</math>。 NIS从测量值中恢复潜在的宏观X。
 
其中<math>\xi \sim \mathcal{N}(0,\sigma)</math> 是符合二维高斯分布的随机数值,<math>\sigma</math> 是位置与速度标准差的向量。将状态<math>\mathbf{x}</math>理解为潜在宏观状态,测量微观状态<math>\tilde{\mathbf{x}}_1</math>,<math>\tilde{\mathbf{x}_2}</math>。 NIS从测量值中恢复潜在的宏观X。
 
[[文件:NIS Fig 4.png|靠左|600px|'''图4.''' 具有测量噪声的简单弹簧振荡器的实验结果。]]
 
[[文件:NIS Fig 4.png|靠左|600px|'''图4.''' 具有测量噪声的简单弹簧振荡器的实验结果。]]
 +
 
根据式27,影响状态测量的噪音可以通过叠加两通道的数据消除。因此,如果在NIS中输入两个测量值的宏观状态,则可简单地获得正确的动力学。使用Euler方法(<math>dt = 1</math>)采样<math>10,000</math>批批次的数据,并在每个批次中生成100个随机初始状态并执行一个步骤动力学,求得下一个时间步长中的状态。使用这些数据来训练神经网络,同时使用相同的数据集来训练具有相同数量参数的普通前馈神经网络以作比较。 结果如图4所示。
 
根据式27,影响状态测量的噪音可以通过叠加两通道的数据消除。因此,如果在NIS中输入两个测量值的宏观状态,则可简单地获得正确的动力学。使用Euler方法(<math>dt = 1</math>)采样<math>10,000</math>批批次的数据,并在每个批次中生成100个随机初始状态并执行一个步骤动力学,求得下一个时间步长中的状态。使用这些数据来训练神经网络,同时使用相同的数据集来训练具有相同数量参数的普通前馈神经网络以作比较。 结果如图4所示。
 +
 
[[文件:NIS Fig 5.png|靠左|600px|'''图5.''' 变量间的各类互信息随着训练迭代次数而发生变化。]]
 
[[文件:NIS Fig 5.png|靠左|600px|'''图5.''' 变量间的各类互信息随着训练迭代次数而发生变化。]]
 +
     
68

个编辑