因果涌现框架与计算力学存在很多相似之处,所有历史过程<math>\overleftarrow{s}</math>可以看作是微观状态,所有<math>R \in \mathcal{R} </math>表示宏观状态,函数<math>\eta </math>可以理解为一种粗粒化函数,因果态<math>\epsilon \left ( \overleftarrow{s} \right )</math>是一种特殊状态,它至少可以与微观状态<math>\overleftarrow{s}</math>具有相同的预测能力,因此,<math>\epsilon </math>可以理解为一种有效的[[粗粒化]]策略,因果转移<math>T </math> 对应于有效的宏观动力学。最小随机性特征表征了宏观动力学的确定性,在因果涌现中可以用[[有效信息]]衡量。 | 因果涌现框架与计算力学存在很多相似之处,所有历史过程<math>\overleftarrow{s}</math>可以看作是微观状态,所有<math>R \in \mathcal{R} </math>表示宏观状态,函数<math>\eta </math>可以理解为一种粗粒化函数,因果态<math>\epsilon \left ( \overleftarrow{s} \right )</math>是一种特殊状态,它至少可以与微观状态<math>\overleftarrow{s}</math>具有相同的预测能力,因此,<math>\epsilon </math>可以理解为一种有效的[[粗粒化]]策略,因果转移<math>T </math> 对应于有效的宏观动力学。最小随机性特征表征了宏观动力学的确定性,在因果涌现中可以用[[有效信息]]衡量。 |