更改

无编辑摘要
第50行: 第50行:  
</math>的第一范数应该为1)的合法TPM。2. 如前所述,若P满足动力学可逆性,则P必为置换矩阵。
 
</math>的第一范数应该为1)的合法TPM。2. 如前所述,若P满足动力学可逆性,则P必为置换矩阵。
   −
所有置换矩阵的行向量都是[[one-hot向量]](即只有一个元素是1,其余元素均为零的向量)。这一特性可以被矩阵P的[[弗罗贝尼乌斯范数]](Frobenius norm)刻画。事实上,当且仅当P的行向量是one-hot向量的时候,矩阵P的弗罗贝尼乌斯范数取最大值。因此,我们可以借由矩阵P的秩r和矩阵的弗罗贝尼乌斯范数共同定义P的近似动力学可逆性。
+
所有置换矩阵的行向量都是[[one-hot向量|独热向量(one-hot vector)]](即只有一个元素是1,其余元素均为零的向量)。这一特性可以被矩阵P的弗罗贝尼乌斯范数(Frobenius norm)刻画。事实上,当且仅当P的行向量是独热向量的时候,矩阵P的弗罗贝尼乌斯范数取最大值。因此,我们可以借由矩阵P的秩r和矩阵的弗罗贝尼乌斯范数共同定义P的近似动力学可逆性。
    
首先,矩阵的秩可以被写作:
 
首先,矩阵的秩可以被写作:
第93行: 第93行:  
</math>时,<math>
 
</math>时,<math>
 
\Gamma_{\alpha}
 
\Gamma_{\alpha}
</math>是P的[[沙滕范数]](Schatten norm);当<math>
+
</math>是P的沙滕范数(Schatten norm);当<math>
 
0<\alpha<1
 
0<\alpha<1
 
</math>时,<math>
 
</math>时,<math>
 
\Gamma_{\alpha}
 
\Gamma_{\alpha}
</math>是P的[[准范数]](quasinorm)<ref>Schatten norm from Wikipedia. https://en.wikipedia.org/wiki/Schatten norm</ref><ref>Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM review 52(3), 471–501 (2010)</ref><ref>Chi, Y., Lu, Y.M., Chen, Y.: Nonconvex optimization meets low-rank matrix factorization: An overview. IEEE Transactions on Signal Processing 67(20), 52395269 (2019)</ref><ref name="Cui">Cui, S., Wang, S., Zhuo, J., Li, L., Huang, Q., Tian, Q.: Towards discriminability and diversity: Batch nuclear-norm maximization under label insufficient situations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3941–3950 (2020)</ref>。
+
</math>是P的准范数(quasinorm)<ref>Schatten norm from Wikipedia. https://en.wikipedia.org/wiki/Schatten norm</ref><ref>Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM review 52(3), 471–501 (2010)</ref><ref>Chi, Y., Lu, Y.M., Chen, Y.: Nonconvex optimization meets low-rank matrix factorization: An overview. IEEE Transactions on Signal Processing 67(20), 52395269 (2019)</ref><ref name="Cui">Cui, S., Wang, S., Zhuo, J., Li, L., Huang, Q., Tian, Q.: Towards discriminability and diversity: Batch nuclear-norm maximization under label insufficient situations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3941–3950 (2020)</ref>。
    
使用这个定义来刻画近似动力学可逆性是合理的,因为完全动力学可逆性可以通过最大化<math>
 
使用这个定义来刻画近似动力学可逆性是合理的,因为完全动力学可逆性可以通过最大化<math>
第132行: 第132行:  
</math>的最大化并不意味着P是可逆的。<math>
 
</math>的最大化并不意味着P是可逆的。<math>
 
{||P||}_{F}
 
{||P||}_{F}
</math>与EI定义中的确定性项具有可比性,因为当P具有越来越多的one-hot向量,P的中的最大转移概率也会变得更大,意味着动力学变得更加可逆。
+
</math>与EI定义中的确定性项具有可比性,因为当P具有越来越多的独热向量,P的中的最大转移概率也会变得更大,意味着动力学变得更加可逆。
    
在实践中总是取<math>
 
在实践中总是取<math>
第179行: 第179行:  
</math>,它们也可以达到最小值0。然而,我们可以证明<math>
 
</math>,它们也可以达到最小值0。然而,我们可以证明<math>
 
\frac{I}{N}
 
\frac{I}{N}
</math>并不是EI的唯一最小点,对于任何满足<math>P_{i}=P_{j},\forall{i}\in{[1,N]}</math>的TPM都能使EI=0.其次EI的上限和下限都是<math>\log{\Gamma_{\alpha}}</math>的线性项。这一点由下面的定理证明。
+
</math>并不是EI的唯一最小点,对于任何满足<math>P_{i}=P_{j},\forall{i}\in{[1,N]}</math>的TPM都能使EI=0.其次EI的上限和下限都是<math>\log{\Gamma_{\alpha}}</math>的线性项。
    
可以证明,对于任何TPM P,其有效信息EI的上限为<math>\frac{2}{\alpha}\log{\Gamma_{\alpha}}</math>,下限为<math>
 
可以证明,对于任何TPM P,其有效信息EI的上限为<math>\frac{2}{\alpha}\log{\Gamma_{\alpha}}</math>,下限为<math>
第295行: 第295行:  
</math>不仅捕获了行向量之间的相似性,而且还捕获了P与动态可逆矩阵的接近度。相比之下,EI无法完成这个任务。
 
</math>不仅捕获了行向量之间的相似性,而且还捕获了P与动态可逆矩阵的接近度。相比之下,EI无法完成这个任务。
   −
可以通过以下数值实验来验证这一点:可以通过将线性相关行向量与线性独立行向量混合来创建TPM,其中独立向量的数量或等级是受控参数。首先,生成r个独立的 one-hot 向量,然后软化这些行向量,软化程度由<math>
+
可以通过以下数值实验来验证这一点:可以通过将线性相关行向量与线性独立行向量混合来创建TPM,其中独立向量的数量或等级是受控参数。首先,生成r个独立的独热向量,然后软化这些行向量,软化程度由<math>
\sigma</math>确定。随后,通过将这些软化的 one-hot 向量与随机选择的线性系数线性组合来创建额外的行向量。然后量化<math>
+
\sigma</math>确定。随后,通过将这些软化的独热向量与随机选择的线性系数线性组合来创建额外的行向量。然后量化<math>
 
\Gamma</math>和 EI 之间的差异,结果如图1(d) 所示。
 
\Gamma</math>和 EI 之间的差异,结果如图1(d) 所示。
  
107

个编辑