更改

添加317字节 、 2024年8月31日 (星期六)
为方便智集百科检索和引用,结合自然语言和形式语言的特点,为“简介”部分编写新的内容。
第1行: 第1行:    −
'''计算力学(Computational Mechanics)'''是一套数学框架,试图从历史序列中寻找、总结规律,并预测未来这一“智能活动”背后的一般规律。计算力学从信息论出发,定义出模式,因果态,各态之间的转换等重要概念,并将智能抽象为所谓的ϵ-机器。有学者从理论上证明,ϵ-机器可以展现出极大的预测能力和极小的复杂性。
+
'''计算力学(Computational Mechanics)'''是一套数学框架,试图从历史序列和变体(Morph)系综中寻找、总结规律,并预测未来。“寻找、总结规律、预测未来”属于“智能活动”的一种,在许许多多的“智能活动”背后又有着潜在的更一般的规律。这许许多多的活动和规律,不断地给科学研究叠加BUFF,最终形成了计算力学的背影。而计算力学自身则重新从信息论出发,定义出模式,因果态,各态之间的转换等重要概念,并最终将“智能”抽象为极为一般的ϵ-机器。ϵ-机器被有关学者从理论上证明,可以展现出极大的预测能力和极小的复杂性,某些情况下还有着强同质性。
    
== 问题背景 ==
 
== 问题背景 ==
   −
=== 涌现现象 ===
+
涌现现象
    
涌现问题由来已久<ref name=":0">James P. Crutchfield, Karl Young. Inferring Statistical Complexity. PHYSICAL REVIEW LETTERS, VOLUME 63, NUMBER 2. 10 JULY 1989</ref><ref name=":1">James P. Crutchfield. The Calculi of Emergence: Computation, Dynamics, and Induction. SFI 94-03-016. 1994</ref><ref name=":2">James E. Hanson, James P. Crutchfield. Computational Mechanics of Cellular Automata: An Example. SFI WORKING PAPER: 1995-10-095</ref><ref name=":3">Cosma Rohilla Shalizi, James P. Crutchfield. Computational Mechanics: Pattern and Prediction, Structure and Simplicity. February 1, 2008</ref>,但仍可归结为自然界中各种物质和运动,在科学的范畴里则被解释为自然现象普遍呈现出的某种程度上的模式和斑图。在十七世纪,牛顿力学是关于物质、力与运动的基本原理;主体(观察者)需要理解信息、计算与预测背后的基本原理。计算力学这门结合了[[复杂网络]]、[[信息论]]的理论框架,有助于解决抽象提取各类现象背后的基本原理的问题。
 
涌现问题由来已久<ref name=":0">James P. Crutchfield, Karl Young. Inferring Statistical Complexity. PHYSICAL REVIEW LETTERS, VOLUME 63, NUMBER 2. 10 JULY 1989</ref><ref name=":1">James P. Crutchfield. The Calculi of Emergence: Computation, Dynamics, and Induction. SFI 94-03-016. 1994</ref><ref name=":2">James E. Hanson, James P. Crutchfield. Computational Mechanics of Cellular Automata: An Example. SFI WORKING PAPER: 1995-10-095</ref><ref name=":3">Cosma Rohilla Shalizi, James P. Crutchfield. Computational Mechanics: Pattern and Prediction, Structure and Simplicity. February 1, 2008</ref>,但仍可归结为自然界中各种物质和运动,在科学的范畴里则被解释为自然现象普遍呈现出的某种程度上的模式和斑图。在十七世纪,牛顿力学是关于物质、力与运动的基本原理;主体(观察者)需要理解信息、计算与预测背后的基本原理。计算力学这门结合了[[复杂网络]]、[[信息论]]的理论框架,有助于解决抽象提取各类现象背后的基本原理的问题。
第16行: 第16行:  
自然界中(Nature)或宇宙(Prototype Universe)中总是处在不断变化之中,这也是相对的。在这种相对变化的环境中,可能出现确定性或稳定性,导致观测者可以被存在。这时观测者和特定的稳定环境出现相互依赖,观测者对特定环境之外投入的关注视情况而定。观测者对该稳定环境中出现的[[微扰]]会加以关心,直到微扰变得可测量且足够充分,超过某一阈值,使得群落对该现象都表达过关心。达到相变程度后,涌现现象即产生,但群落中的观测者对相变后的环境仍会继续观测,改变内生涌现斑图,或启动单个或群落的效应器,使得环境的多个指标重新落入某个范围。这种差额机制(co-relation)即可用于对比,也可用于对齐。在生态群落多级系统中,则要定义“正”的概念和范围,以判断“偏”的存在性。
 
自然界中(Nature)或宇宙(Prototype Universe)中总是处在不断变化之中,这也是相对的。在这种相对变化的环境中,可能出现确定性或稳定性,导致观测者可以被存在。这时观测者和特定的稳定环境出现相互依赖,观测者对特定环境之外投入的关注视情况而定。观测者对该稳定环境中出现的[[微扰]]会加以关心,直到微扰变得可测量且足够充分,超过某一阈值,使得群落对该现象都表达过关心。达到相变程度后,涌现现象即产生,但群落中的观测者对相变后的环境仍会继续观测,改变内生涌现斑图,或启动单个或群落的效应器,使得环境的多个指标重新落入某个范围。这种差额机制(co-relation)即可用于对比,也可用于对齐。在生态群落多级系统中,则要定义“正”的概念和范围,以判断“偏”的存在性。
   −
=== 涌现关系 ===
+
涌现关系
    
自然存在是一个世界,主体(观察者)是世界的子集的同时,主体也会在内部构建一个世界的映象。这个过程本身从定性上来讲,也是一种涌现现象。'''计算力学'''选择建立从自然到主体,再从主体到涌现(头脑风暴),最后主体增加适应性的角度来阐述关系。
 
自然存在是一个世界,主体(观察者)是世界的子集的同时,主体也会在内部构建一个世界的映象。这个过程本身从定性上来讲,也是一种涌现现象。'''计算力学'''选择建立从自然到主体,再从主体到涌现(头脑风暴),最后主体增加适应性的角度来阐述关系。
470

个编辑