更改

添加57字节 、 2024年8月31日 (星期六)
第546行: 第546行:  
然而,如文献<ref name=":6" />中指出,通过在最大化EI的同时考虑模型的误差因素,上述问题可以得到缓解。然而,虽然机器学习技术促进了因果关系与因果机制的学习,以及对涌现属性的识别,但重要的是通过机器学习获得的结果是否反映了本体论的因果关系和涌现,或者它们仅仅是一种认识论现象?这一点则尚无定论。尽管机器学习的引入不一定能解决围绕本体论和认识论因果关系和涌现的争论问题,但它可以提供有助于减轻主观性的依赖。这是因为机器学习主体可以被视为一个“客观”的观察者,对因果关系和涌现做出判断,这种判断是独立于人类观察者的。然而,唯一解的问题在这一方法中仍然存在。机器学习的结果是本体论还是认识论的?答案是,结果是认识论的,其中认识主体是机器学习算法。然而,这并不意味着机器学习的所有结果都是无意义的,因为如果学习的主体得到了良好的训练,并且定义的数学目标得到了有效的优化,那么结果也可以被认为是客观的,因为算法本身是客观的,且透明的。结合机器学习方法可以帮助我们建立观察者的理论框架,并研究观察者与相应的被观察复杂系统之间的相互作用。
 
然而,如文献<ref name=":6" />中指出,通过在最大化EI的同时考虑模型的误差因素,上述问题可以得到缓解。然而,虽然机器学习技术促进了因果关系与因果机制的学习,以及对涌现属性的识别,但重要的是通过机器学习获得的结果是否反映了本体论的因果关系和涌现,或者它们仅仅是一种认识论现象?这一点则尚无定论。尽管机器学习的引入不一定能解决围绕本体论和认识论因果关系和涌现的争论问题,但它可以提供有助于减轻主观性的依赖。这是因为机器学习主体可以被视为一个“客观”的观察者,对因果关系和涌现做出判断,这种判断是独立于人类观察者的。然而,唯一解的问题在这一方法中仍然存在。机器学习的结果是本体论还是认识论的?答案是,结果是认识论的,其中认识主体是机器学习算法。然而,这并不意味着机器学习的所有结果都是无意义的,因为如果学习的主体得到了良好的训练,并且定义的数学目标得到了有效的优化,那么结果也可以被认为是客观的,因为算法本身是客观的,且透明的。结合机器学习方法可以帮助我们建立观察者的理论框架,并研究观察者与相应的被观察复杂系统之间的相互作用。
   −
==相关领域研究==
+
==相关研究领域==
存在一些相关领域研究与因果涌现理论联系比较紧密,重点介绍与[[模型约简]]、[[动力学模式分解]]以及[[马尔科夫链的简化]]的区别和联系。
+
存在一些相关研究领域与因果涌现理论联系比较紧密,这里我们重点介绍与[[模型约简]]、[[动力学模式分解]]以及[[马尔科夫链的简化]]三个相关领域的区别和联系。
    
===动力学模型约简===
 
===动力学模型约简===
因果涌现的一个重要的指标就是粗粒化策略的选取,而如果微观模型已知的时候,对微观态的粗粒化就等价于对微观模型进行'''模型约简'''(Model Reduction)。模型约简是控制论中的一个重要子领域,Antoulas就曾经写过相关的综述文章<ref name=":15">Antoulas A C. An overview of approximation methods for large-scale dynamical systems[J]. Annual reviews in Control, 2005, 29(2): 181-190.</ref>。
+
因果涌现的一个重要的指标就是粗粒化策略的选取,而如果在微观模型已知的时候,对微观态的粗粒化就等价于对微观模型进行'''模型约简'''(Model Reduction)。模型约简是控制论中的一个重要子领域,Antoulas就曾经写过相关的综述文章<ref name=":15">Antoulas A C. An overview of approximation methods for large-scale dynamical systems[J]. Annual reviews in Control, 2005, 29(2): 181-190.</ref>。
   −
模型约简,就是要将高维的复杂系统动力学模型进行化简、降维,用低维的动力学来描述原系统的演化规律,这一过程其实就是因果涌现研究中的粗粒化过程。将对大尺度动力系统的近似方法主要有两大类,即基于奇异值分解<ref name=":15" /><ref>Gallivan K, Grimme E, Van Dooren P. Asymptotic waveform evaluation via a Lanczos method[J]. Applied Mathematics Letters, 1994, 7(5): 75-80.</ref>的近似方法和基于Krylov<ref name=":15" /><ref>CHRISTIAN DE VILLEMAGNE & ROBERT E. SKELTON (1987) Model reductions using a projection formulation, International Journal of Control, 46:6, 2141-2169, DOI: 10.1080/00207178708934040 </ref><ref>Boley D L. Krylov space methods on state-space control models[J]. Circuits, Systems and Signal Processing, 1994, 13: 733-758.</ref>的近似方法。前者基于奇异值分解,后者基于矩匹配。虽然前者具有许多理想的性质,包括误差界,但它不能应用于高复杂度的系统。另一方面,后者的优势在于它可以迭代实现,因此适用于高维度的复杂度系统。将这两种方法的优势相结合,就产生了第三类近似方法,即称为SVD/Krylov的方法<ref>Gugercin S. An iterative SVD-Krylov based method for model reduction of large-scale dynamical systems[J]. Linear Algebra and its Applications, 2008, 428(8-9): 1964-1986.</ref><ref>Khatibi M, Zargarzadeh H, Barzegaran M. Power system dynamic model reduction by means of an iterative SVD-Krylov model reduction method[C]//2016 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). IEEE, 2016: 1-6.</ref>。两种方法都是基于粗粒化前后输出函数的误差损失函数来对模型约简效果做评价的,因此,模型约简的目标就是寻找能使误差最小的约简参数矩阵。
+
模型约简,就是要将高维的复杂系统动力学模型进行化简、降维,用低维的动力学来描述原系统的演化规律,这一过程其实就是因果涌现研究中的粗粒化过程。对大尺度动力系统的近似方法主要有两大类,即基于奇异值分解<ref name=":15" /><ref>Gallivan K, Grimme E, Van Dooren P. Asymptotic waveform evaluation via a Lanczos method[J]. Applied Mathematics Letters, 1994, 7(5): 75-80.</ref>的近似方法和基于Krylov<ref name=":15" /><ref>CHRISTIAN DE VILLEMAGNE & ROBERT E. SKELTON (1987) Model reductions using a projection formulation, International Journal of Control, 46:6, 2141-2169, DOI: 10.1080/00207178708934040 </ref><ref>Boley D L. Krylov space methods on state-space control models[J]. Circuits, Systems and Signal Processing, 1994, 13: 733-758.</ref>的近似方法。前者基于奇异值分解,后者基于矩匹配。虽然前者具有许多理想的性质,包括误差界,但它不能应用于高复杂度的系统。另一方面,后者的优势在于它可以迭代实现,因此适用于高维度的复杂度系统。将这两种方法的优势相结合,就产生了第三类近似方法,即称为SVD/Krylov的方法<ref>Gugercin S. An iterative SVD-Krylov based method for model reduction of large-scale dynamical systems[J]. Linear Algebra and its Applications, 2008, 428(8-9): 1964-1986.</ref><ref>Khatibi M, Zargarzadeh H, Barzegaran M. Power system dynamic model reduction by means of an iterative SVD-Krylov model reduction method[C]//2016 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). IEEE, 2016: 1-6.</ref>。两种方法都是基于粗粒化前后输出函数的误差损失函数来对模型约简效果做评价的,因此,模型约简的目标就是寻找能使误差最小的约简参数矩阵。
   −
一般情况下基于模型约简前后输出函数的误差损失函数可以用来判断粗粒化参数,这一过程默认了系统约简的过程会损失信息量,因此误差最小化是判断约简方法有效性的唯一方法。但是如果从因果涌现角度考虑,[[有效信息]]会因为降维而增大,这也是因果涌现研究中的粗粒化策略和控制论中的模型约简最大的不同。当动力系统是随机系统的时候<ref>CHRISTIAN DE VILLEMAGNE & ROBERT E. SKELTON (1987) Model reductions using a projection formulation, International Journal of Control, 46:6, 2141-2169, DOI: 10.1080/00207178708934040 </ref>,直接计算损失函数会因为随机性的存在,导致损失函数的稳定性无法保证,因而约简的有效性也会无法准确测量。而本身就是基于随机动力系统的有效信息和因果涌现指标,一定程度上可以增加评判指标的有效性,使对随机动力系统的控制研究更加严谨。
+
一般情况下基于模型约简前后输出函数的误差损失函数可以用来判断粗粒化参数,这一过程默认了系统约简的过程会损失信息量,因此误差最小化是判断约简方法有效性的唯一方法。但是如果从因果涌现角度考虑,[[有效信息]]会因为降维而增大,这也是因果涌现研究中的粗粒化策略和控制论中的模型约简最大的不同。当动力系统是随机系统的时候<ref>CHRISTIAN DE VILLEMAGNE & ROBERT E. SKELTON (1987) Model reductions using a projection formulation, International Journal of Control, 46:6, 2141-2169, DOI: 10.1080/00207178708934040 </ref>,直接计算损失函数会因为随机性的存在,导致其稳定性无法保证,因而约简的有效性也会无法准确测量。而本身就是基于随机动力系统的有效信息和因果涌现指标,一定程度上可以增加评判指标的有效性,使对随机动力系统的控制研究更加严谨。
    
===动力学模态分解===
 
===动力学模态分解===
除了动力学模型约简之外,动力学模态分解也和粗粒化有着密切的联系。动力学模态分解(Dynamic Mode Decomposition, DMD)<ref>Schmid P J. Dynamic mode decomposition and its variants[J]. Annual Review of Fluid Mechanics, 2022, 54(1): 225-254.</ref><ref>J. Proctor, S. Brunton and J. N. Kutz, Dynamic mode decomposition with control, arXiv:1409.6358</ref>模型的基本思想是直接从数据中得到的流场中提取流动的动态信息,根据不同频率的流场变动寻找数据映射。该方法基于动态非线性无穷维转化成动态线性有穷维的方式,采用了Arnoldi 方法以及奇异值分解SVD降维的思想,借鉴了ARIMA、SARIMA以及季节模型等许多时间序列的关键特征,被广泛的使用在数学、物理、金融等领域<ref>J. Grosek and J. N. Kutz, Dynamic mode decomposition for real-time background/foreground separation in video, arXiv:1404.7592.</ref>。动态模式分解按照频率对系统进行排序,提取系统特征频率,从而观察不同频率的流动结构对流场的贡献,同时动态模式分解模态特征值可以进行流场预测。因为动态模态分解算法具有理论的严密性、稳定性、简易性等优点。在不断应用的同时,动态模态分解算法也在原有基础之上不断被完善,如与SPA检验结合起来,以验证股票价格预测对比基准点的强有效性:以及通过联系动态模态分解算法和光谱研究的方式,模拟股票市场在循环经济当中的振动模式等,这些应用均能够有效地采集分析数据,并最终得到结果。
+
除了动力学模型约简之外,动力学模态分解也和粗粒化有着密切的联系。动力学模态分解(Dynamic Mode Decomposition, DMD)<ref>Schmid P J. Dynamic mode decomposition and its variants[J]. Annual Review of Fluid Mechanics, 2022, 54(1): 225-254.</ref><ref>J. Proctor, S. Brunton and J. N. Kutz, Dynamic mode decomposition with control, arXiv:1409.6358</ref>模型的基本思想是直接从数据中得到流场中流动的动态信息,根据不同频率的流场变动寻找数据映射。该方法基于把非线性无穷维动力学转化为有穷维的线性动力学的方式,并采用了Arnoldi 方法以及奇异值分解降维的思想,借鉴了ARIMA、SARIMA以及季节模型等许多时间序列的关键特征,被广泛的使用在数学、物理、金融等领域<ref>J. Grosek and J. N. Kutz, Dynamic mode decomposition for real-time background/foreground separation in video, arXiv:1404.7592.</ref>。动态模式分解按照频率对系统进行排序,提取系统的本征频率,从而观察不同频率的流动结构对流场的贡献,同时动态模式分解模态特征值可以对流场进行预测。因为动态模态分解算法具有理论的严密性、稳定性、简易性等优点。在不断应用的同时,动态模态分解算法也在原有基础之上不断被完善,如与SPA检验结合起来,以验证股票价格预测对比基准点的强有效性:以及通过联系动态模态分解算法和光谱研究的方式,模拟股票市场在循环经济当中的振动模式等。这些应用均能够有效地采集分析数据,并最终得到结果。
   −
动力学模式分解,属于利用线性变换同时对变量、动力学、观测函数进行降维<ref>B. Brunton, L. Johnson, J. Ojemann and J. N. Kutz, Extracting spatial-temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition arXiv:1409.5496</ref>的方法。这种方法是另一种和因果涌现中粗粒化策略相近,依然基于误差最小化来进行优化的方法。模型约简和动力学模式分解虽然都和模型粗粒化十分接近,但是他们都没有基于有效信息的优化,本质上都是默认了一定会损失信息,而不会增强因果效应。在文献<ref>Liu K, Yuan B, Zhang J. An Exact Theory of Causal Emergence for Linear Stochastic Iteration Systems[J]. arXiv preprint arXiv:2405.09207, 2024.</ref>中,作者们证明了其实有效信息最大化的最优解集包含因果涌最大化的解集,因此如果要优化因果涌现,可以先最小化误差,在最小误差的解集中寻找最佳的粗粒化策略。
+
动力学模式分解,属于利用线性变换同时对变量、动力学、观测函数进行降维<ref>B. Brunton, L. Johnson, J. Ojemann and J. N. Kutz, Extracting spatial-temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition arXiv:1409.5496</ref>的方法。这种方法是另一种与因果涌现中粗粒化策略相近的,将误差最小化作为主要目标来进行优化的方法。模型约简和动力学模式分解虽然都和模型粗粒化十分接近,但是它们都没有基于有效信息的优化,本质上都是默认了一定程度上的损失信息,同时也不会增强因果效应的。在文献<ref>Liu K, Yuan B, Zhang J. An Exact Theory of Causal Emergence for Linear Stochastic Iteration Systems[J]. arXiv preprint arXiv:2405.09207, 2024.</ref>中,作者们证明了其实有效信息最大化的最优解集包含了误差最小化的解集,因此如果要优化因果涌现,可以先最小化误差,在最小误差的解集中寻找最佳的粗粒化策略。
    
===马尔科夫链的简化===
 
===马尔科夫链的简化===
786

个编辑