打开主菜单
首页
随机
登录
设置
关于集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
免责声明
集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
搜索
更改
←上一编辑
下一编辑→
NIS
(查看源代码)
2024年8月31日 (六) 22:24的版本
删除19字节
、
2024年8月31日 (星期六)
→训练过程的变化
第252行:
第252行:
对于图3中的压缩信息信道,<math>\psi_\alpha</math>的雅可比矩阵的行列式和<math>\mathbf{y}_t</math>的香农熵的下界是整个信道的信息:
对于图3中的压缩信息信道,<math>\psi_\alpha</math>的雅可比矩阵的行列式和<math>\mathbf{y}_t</math>的香农熵的下界是整个信道的信息:
{{NumBlk|:|<blockquote><math>H(\mathbf{x}_t)+ \mathbb{E}(\ln | \det (J_{\psi_\alpha} (\mathbf{x}_t))|) \geq H(\mathbf{y}_t) + \mathbb{E}(\ln |\det(J_{\psi_\alpha}, \mathbf{y}_t))|) \geq I(\mathbf{x}_t ; \hat{\mathbf{x}_{t+1}})</math></blockquote>|{{EquationNote|23}}}}
{{NumBlk|:|<blockquote><math>H(\mathbf{x}_t)+ \mathbb{E}(\ln | \det (J_{\psi_\alpha} (\mathbf{x}_t))|) \geq H(\mathbf{y}_t) + \mathbb{E}(\ln |\det(J_{\psi_\alpha}, \mathbf{y}_t))|) \geq I(\mathbf{x}_t ; \hat{\mathbf{x}_{t+1}})</math></blockquote>|{{EquationNote|23}}}}
−
其中H为香农熵测度,<math>J_{\psi_\alpha}(\mathbf{x}_t)</math>为双射<math>\psi_\alpha</math>输入<math>\mathbf{x}_t</math> 时的雅可比矩阵,<math>J_{\psi_\alpha , \mathbf{y}_t}(\mathbf{x}_t)</math> 为<math>J_{\psi_\alpha}(\mathbf{x}_t)</math>在<math>\mathbf{x}'_t</math> 投影<math>\mathbf{y}_t</math>
上的子矩阵。证明见附录D。
+
其中H为香农熵测度,<math>J_{\psi_\alpha}(\mathbf{x}_t)</math>为双射<math>\psi_\alpha</math>输入<math>\mathbf{x}_t</math> 时的雅可比矩阵,<math>J_{\psi_\alpha , \mathbf{y}_t}(\mathbf{x}_t)</math> 为<math>J_{\psi_\alpha}(\mathbf{x}_t)</math>在<math>\mathbf{x}'_t</math> 投影<math>\mathbf{y}_t</math>
上的子矩阵。
由于给出了<math>\mathbf{\mathrm{x}}_t</math>的熵,定理4指出 <math>|\det(J_{\psi_\alpha}(\mathbf{x}_t))|</math>的对数的期望以及<math>\mathbf{y}_t</math>必然大于整个信道的信息。
由于给出了<math>\mathbf{\mathrm{x}}_t</math>的熵,定理4指出 <math>|\det(J_{\psi_\alpha}(\mathbf{x}_t))|</math>的对数的期望以及<math>\mathbf{y}_t</math>必然大于整个信道的信息。
Jake
786
个编辑